000903129 001__ 903129
000903129 005__ 20220103172041.0
000903129 0247_ $$2doi$$a10.5194/hess-25-6087-2021
000903129 0247_ $$2Handle$$a2128/29355
000903129 0247_ $$2altmetric$$aaltmetric:117969665
000903129 0247_ $$2WOS$$aWOS:000726412400001
000903129 037__ $$aFZJ-2021-04853
000903129 082__ $$a550
000903129 1001_ $$0P:(DE-HGF)0$$aForstner, Veronika$$b0$$eCorresponding author
000903129 245__ $$aResponse of water fluxes and biomass production to climate change in permanent grassland soil ecosystems
000903129 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000903129 3367_ $$2DRIVER$$aarticle
000903129 3367_ $$2DataCite$$aOutput Types/Journal article
000903129 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638855936_10164
000903129 3367_ $$2BibTeX$$aARTICLE
000903129 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903129 3367_ $$00$$2EndNote$$aJournal Article
000903129 520__ $$aEffects of climate change on the ecosystem productivity and water fluxes have been studied in various types of experiments. However, it is still largely unknown whether and how the experimental approach itself affects the results of such studies. We employed two contrasting experimental approaches, using high-precision weighable monolithic lysimeters, over a period of 4 years to identify and compare the responses of water fluxes and aboveground biomass to climate change in permanent grassland. The first, manipulative, approach is based on controlled increases of atmospheric CO2 concentration and surface temperature. The second, observational, approach uses data from a space-for time substitution along a gradient of climatic conditions. The Budyko framework was used to identify if the soil ecosystem is energy limited or water limited. Elevated temperature reduced the amount of non-rainfall water, particularly during the growing season in both approaches. In energy-limited grassland ecosystems, elevated temperature increased the actual evapotranspiration and decreased aboveground biomass. As a consequence, elevated temperature led to decreasing seepage rates in energy-limited systems. Under water-limited conditions in dry periods, elevated temperature aggravated water stress and, thus, resulted in reduced actual evapotranspiration. The already small seepage rates of the drier soils remained almost unaffected under these conditions compared to soils under wetter conditions. Elevated atmospheric CO2 reduced both actual evapotranspiration and aboveground biomass in the manipulative experiment and, therefore, led to a clear increase and change in seasonality of seepage. As expected, the aboveground biomass productivity and ecosystem efficiency indicators of the water-limited ecosystems were negatively correlated with an increase in aridity, while the trend was unclear for the energy-limited ecosystems. In both experimental approaches, the responses of soil water fluxes and biomass production mainly depend on the ecosystems’ status with respect to energy or water limitation. To thoroughly understand the ecosystem response to climate change and be able to identify tipping points, experiments need to embrace sufficiently extreme boundary conditions and explore responses to individual and multiple drivers, such as temperature, CO2 concentration, and precipitation, including non-rainfall water. In this regard, manipulative and observational climate change experiments complement one another and, thus, should be combined in the investigation of climate change effects on grassland.
000903129 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000903129 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903129 7001_ $$0P:(DE-Juel1)158034$$aGroh, Jannis$$b1
000903129 7001_ $$00000-0002-2730-494X$$aVremec, Matevz$$b2
000903129 7001_ $$0P:(DE-HGF)0$$aHerndl, Markus$$b3
000903129 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4
000903129 7001_ $$00000-0002-6232-7688$$aGerke, Horst H.$$b5
000903129 7001_ $$00000-0001-7474-3884$$aBirk, Steffen$$b6
000903129 7001_ $$0P:(DE-Juel1)129523$$aPütz, Thomas$$b7$$ufzj
000903129 773__ $$0PERI:(DE-600)2100610-6$$a10.5194/hess-25-6087-2021$$gVol. 25, no. 12, p. 6087 - 6106$$n12$$p6087-6106$$tHydrology and earth system sciences$$v25$$x1027-5606$$y2021
000903129 8564_ $$uhttps://juser.fz-juelich.de/record/903129/files/Forstner%20et%20al.%202021.pdf$$yOpenAccess
000903129 909CO $$ooai:juser.fz-juelich.de:903129$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903129 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158034$$aForschungszentrum Jülich$$b1$$kFZJ
000903129 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b4$$kFZJ
000903129 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129523$$aForschungszentrum Jülich$$b7$$kFZJ
000903129 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000903129 9141_ $$y2021
000903129 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-26
000903129 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000903129 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903129 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-26
000903129 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bHYDROL EARTH SYST SC : 2019$$d2021-01-26
000903129 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-26
000903129 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-26
000903129 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000903129 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-26
000903129 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-26
000903129 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903129 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-01-26
000903129 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-26
000903129 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHYDROL EARTH SYST SC : 2019$$d2021-01-26
000903129 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-26
000903129 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-26
000903129 920__ $$lyes
000903129 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000903129 980__ $$ajournal
000903129 980__ $$aVDB
000903129 980__ $$aUNRESTRICTED
000903129 980__ $$aI:(DE-Juel1)IBG-3-20101118
000903129 9801_ $$aFullTexts