000903131 001__ 903131
000903131 005__ 20240712101057.0
000903131 0247_ $$2doi$$a10.5194/acp-21-16067-2021
000903131 0247_ $$2ISSN$$a1680-7316
000903131 0247_ $$2ISSN$$a1680-7324
000903131 0247_ $$2Handle$$a2128/29299
000903131 0247_ $$2altmetric$$aaltmetric:115938918
000903131 0247_ $$2WOS$$aWOS:000714359600001
000903131 037__ $$aFZJ-2021-04855
000903131 082__ $$a550
000903131 1001_ $$0P:(DE-Juel1)173726$$aTan, Zhaofeng$$b0
000903131 245__ $$aAtmospheric photo-oxidation of myrcene: OH reaction rate constant, gas-phase oxidation products and radical budgets
000903131 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000903131 3367_ $$2DRIVER$$aarticle
000903131 3367_ $$2DataCite$$aOutput Types/Journal article
000903131 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638458307_24421
000903131 3367_ $$2BibTeX$$aARTICLE
000903131 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903131 3367_ $$00$$2EndNote$$aJournal Article
000903131 520__ $$aThe photo-oxidation of myrcene, a monoterpene species emitted by plants, was investigated at atmospheric conditions in the outdoor simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a Large Reaction Chamber). The chemical structure of myrcene consists of one moiety that is a conjugated π system (similar to isoprene) and another moiety that is a triple-substituted olefinic unit (similar to 2-methyl-2-butene). Hydrogen shift reactions of organic peroxy radicals (RO2) formed in the reaction of isoprene with atmospheric OH radicals are known to be of importance for the regeneration of OH. Structure–activity relationships (SARs) suggest that similar hydrogen shift reactions like in isoprene may apply to the isoprenyl part of RO2 radicals formed during the OH oxidation of myrcene. In addition, SAR predicts further isomerization reactions that would be competitive with bimolecular RO2 reactions for chemical conditions that are typical for forested environments with low concentrations of nitric oxide. Assuming that OH peroxy radicals can rapidly interconvert by addition and elimination of O2 like in isoprene, bulk isomerization rate constants of 0.21 and 0.097 s−1 (T=298 K) for the three isomers resulting from the 3′-OH and 1-OH addition, respectively, can be derived from SAR. Measurements of radicals and trace gases in the experiments allowed us to calculate radical production and destruction rates, which are expected to be balanced. The largest discrepancies between production and destruction rates were found for RO2. Additional loss of organic peroxy radicals due to isomerization reactions could explain the observed discrepancies. The uncertainty of the total radical (ROx=OH+HO2+RO2) production rates was high due to the uncertainty in the yield of radicals from myrcene ozonolysis. However, results indicate that radical production can only be balanced if the reaction rate constant of the reaction between hydroperoxy (HO2) and RO2 radicals derived from myrcene is lower (0.9 to 1.6×10−11 cm3 s−1) than predicted by SAR. Another explanation of the discrepancies would be that a significant fraction of products (yield: 0.3 to 0.6) from these reactions include OH and HO2 radicals instead of radical-terminating organic peroxides. Experiments also allowed us to determine the yields of organic oxidation products acetone (yield: 0.45±0.08) and formaldehyde (yield: 0.35±0.08). Acetone and formaldehyde are produced from different oxidation pathways, so that yields of these compounds reflect the branching ratios of the initial OH addition to myrcene. Yields determined in the experiments are consistent with branching ratios expected from SAR. The yield of organic nitrate was determined from the gas-phase budget analysis of reactive oxidized nitrogen in the chamber, giving a value of 0.13±0.03. In addition, the reaction rate constant for myrcene + OH was determined from the measured myrcene concentration, yielding a value of (2.3±0.3)×10−10 cm3 s−1.
000903131 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000903131 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903131 7001_ $$0P:(DE-Juel1)176215$$aHantschke, Luisa$$b1
000903131 7001_ $$0P:(DE-Juel1)3039$$aKaminski, Martin$$b2
000903131 7001_ $$0P:(DE-Juel1)136889$$aAcir, Ismail-Hakki$$b3
000903131 7001_ $$0P:(DE-Juel1)2693$$aBohn, Birger$$b4
000903131 7001_ $$0P:(DE-Juel1)174162$$aCho, Changmin$$b5
000903131 7001_ $$0P:(DE-Juel1)16317$$aDorn, Hans-Peter$$b6
000903131 7001_ $$0P:(DE-Juel1)6775$$aLi, Xin$$b7$$ufzj
000903131 7001_ $$0P:(DE-Juel1)166537$$aNovelli, Anna$$b8
000903131 7001_ $$0P:(DE-Juel1)7894$$aNehr, Sascha$$b9
000903131 7001_ $$0P:(DE-Juel1)16347$$aRohrer, Franz$$b10$$ufzj
000903131 7001_ $$0P:(DE-Juel1)5344$$aTillmann, Ralf$$b11
000903131 7001_ $$0P:(DE-Juel1)2367$$aWegener, Robert$$b12
000903131 7001_ $$0P:(DE-Juel1)16326$$aHofzumahaus, Andreas$$b13
000903131 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b14
000903131 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b15
000903131 7001_ $$0P:(DE-Juel1)7363$$aFuchs, Hendrik$$b16$$eCorresponding author
000903131 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-16067-2021$$gVol. 21, no. 20, p. 16067 - 16091$$n20$$p16067 - 16091$$tAtmospheric chemistry and physics$$v21$$x1680-7316$$y2021
000903131 8564_ $$uhttps://juser.fz-juelich.de/record/903131/files/acp-21-16067-2021-1.pdf$$yOpenAccess
000903131 909CO $$ooai:juser.fz-juelich.de:903131$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173726$$aForschungszentrum Jülich$$b0$$kFZJ
000903131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176215$$aForschungszentrum Jülich$$b1$$kFZJ
000903131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2693$$aForschungszentrum Jülich$$b4$$kFZJ
000903131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174162$$aForschungszentrum Jülich$$b5$$kFZJ
000903131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16317$$aForschungszentrum Jülich$$b6$$kFZJ
000903131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6775$$aForschungszentrum Jülich$$b7$$kFZJ
000903131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166537$$aForschungszentrum Jülich$$b8$$kFZJ
000903131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16347$$aForschungszentrum Jülich$$b10$$kFZJ
000903131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich$$b11$$kFZJ
000903131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2367$$aForschungszentrum Jülich$$b12$$kFZJ
000903131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16326$$aForschungszentrum Jülich$$b13$$kFZJ
000903131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b14$$kFZJ
000903131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b15$$kFZJ
000903131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich$$b16$$kFZJ
000903131 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000903131 9141_ $$y2021
000903131 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000903131 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000903131 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903131 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000903131 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000903131 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000903131 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000903131 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000903131 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000903131 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000903131 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903131 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000903131 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000903131 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000903131 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000903131 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000903131 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000903131 9801_ $$aFullTexts
000903131 980__ $$ajournal
000903131 980__ $$aVDB
000903131 980__ $$aUNRESTRICTED
000903131 980__ $$aI:(DE-Juel1)IEK-8-20101013
000903131 981__ $$aI:(DE-Juel1)ICE-3-20101013