000903133 001__ 903133
000903133 005__ 20220103172042.0
000903133 0247_ $$2doi$$a10.1063/5.0037692
000903133 0247_ $$2ISSN$$a0003-6951
000903133 0247_ $$2ISSN$$a1077-3118
000903133 0247_ $$2ISSN$$a1520-8842
000903133 0247_ $$2Handle$$a2128/29399
000903133 0247_ $$2WOS$$aWOS:000630485900002
000903133 037__ $$aFZJ-2021-04857
000903133 082__ $$a530
000903133 1001_ $$00000-0003-0492-9696$$aSeidel, Sarah$$b0$$eCorresponding author
000903133 245__ $$aAlGaN/GaN MISHEMTs with epitaxially grown GdScO 3 as high- κ dielectric
000903133 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2021
000903133 3367_ $$2DRIVER$$aarticle
000903133 3367_ $$2DataCite$$aOutput Types/Journal article
000903133 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638973535_18831
000903133 3367_ $$2BibTeX$$aARTICLE
000903133 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903133 3367_ $$00$$2EndNote$$aJournal Article
000903133 520__ $$aEpitaxially grown GdScO3 was integrated in a GaN-based metal-insulator-semiconductor high electron mobility transistor as a high-κ gate passivation layer. Microstructural investigations using transmission electron microscopy and x-ray diffraction confirm the epitaxial growth of GdScO3 on GaN deposited by pulsed laser deposition on the AlGaN-GaN heterostructure. The metal-insulator-semiconductor high electron mobility transistor was compared to unpassivated and to Al2O3 passivated high electron mobility transistors. A layer of 20 nm GdScO3 reduces the gate leakage current below the level of the Al2O3 passivated transistors and below the off-current of the high electron mobility transistor without any gate dielectric. Time-dependent measurements show a strong dependence of the drain leakage current in the off-state on light illumination, which indicates slow trapping effects in GdScO3 or at the GdScO3–GaN interface.AlGaN/GaN high electron mobility transistors (HEMTs) have attracted a lot of interest over the last few years. Despite the excellent material properties of GaN, such as the high breakdown field, especially the formation of a two-dimensional electron gas (2DEG) at the AlGaN–GaN interface has motivated intensive studies. Due to spontaneous and piezoelectric polarization at the interface, the conduction band of GaN bends below the Fermi level and creates a highly conductive electron channel, which enables high frequency switching devices.1 Intensive studies have been conducted to improve the performance of AlGaN/GaN high electron mobility transistors (HEMTs) by implementing an additional dielectric layer underneath the gate in a so-called metal insulator high electron mobility transistor (MISHEMT).
000903133 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000903133 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903133 7001_ $$aSchmid, Alexander$$b1
000903133 7001_ $$aMiersch, Christian$$b2
000903133 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b3
000903133 7001_ $$aHeitmann, Johannes$$b4
000903133 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/5.0037692$$gVol. 118, no. 5, p. 052902 -$$n5$$p052902 -$$tApplied physics letters$$v118$$x0003-6951$$y2021
000903133 8564_ $$uhttps://juser.fz-juelich.de/record/903133/files/ALGaN-GaN-Freiberg-APL.pdf$$yPublished on 2021-02-01. Available in OpenAccess from 2022-02-01.
000903133 909CO $$ooai:juser.fz-juelich.de:903133$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903133 9101_ $$0I:(DE-HGF)0$$60000-0003-0492-9696$$aExternal Institute$$b0$$kExtern
000903133 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich$$b3$$kFZJ
000903133 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000903133 9141_ $$y2021
000903133 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000903133 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000903133 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28
000903133 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000903133 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000903133 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2019$$d2021-01-28
000903133 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000903133 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000903133 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000903133 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000903133 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000903133 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-28$$wger
000903133 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000903133 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-28
000903133 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000903133 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000903133 920__ $$lyes
000903133 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000903133 980__ $$ajournal
000903133 980__ $$aVDB
000903133 980__ $$aUNRESTRICTED
000903133 980__ $$aI:(DE-Juel1)PGI-9-20110106
000903133 9801_ $$aFullTexts