001     903133
005     20220103172042.0
024 7 _ |a 10.1063/5.0037692
|2 doi
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a 1520-8842
|2 ISSN
024 7 _ |a 2128/29399
|2 Handle
024 7 _ |a WOS:000630485900002
|2 WOS
037 _ _ |a FZJ-2021-04857
082 _ _ |a 530
100 1 _ |a Seidel, Sarah
|0 0000-0003-0492-9696
|b 0
|e Corresponding author
245 _ _ |a AlGaN/GaN MISHEMTs with epitaxially grown GdScO 3 as high- κ dielectric
260 _ _ |a Melville, NY
|c 2021
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638973535_18831
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Epitaxially grown GdScO3 was integrated in a GaN-based metal-insulator-semiconductor high electron mobility transistor as a high-κ gate passivation layer. Microstructural investigations using transmission electron microscopy and x-ray diffraction confirm the epitaxial growth of GdScO3 on GaN deposited by pulsed laser deposition on the AlGaN-GaN heterostructure. The metal-insulator-semiconductor high electron mobility transistor was compared to unpassivated and to Al2O3 passivated high electron mobility transistors. A layer of 20 nm GdScO3 reduces the gate leakage current below the level of the Al2O3 passivated transistors and below the off-current of the high electron mobility transistor without any gate dielectric. Time-dependent measurements show a strong dependence of the drain leakage current in the off-state on light illumination, which indicates slow trapping effects in GdScO3 or at the GdScO3–GaN interface.AlGaN/GaN high electron mobility transistors (HEMTs) have attracted a lot of interest over the last few years. Despite the excellent material properties of GaN, such as the high breakdown field, especially the formation of a two-dimensional electron gas (2DEG) at the AlGaN–GaN interface has motivated intensive studies. Due to spontaneous and piezoelectric polarization at the interface, the conduction band of GaN bends below the Fermi level and creates a highly conductive electron channel, which enables high frequency switching devices.1 Intensive studies have been conducted to improve the performance of AlGaN/GaN high electron mobility transistors (HEMTs) by implementing an additional dielectric layer underneath the gate in a so-called metal insulator high electron mobility transistor (MISHEMT).
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schmid, Alexander
|b 1
700 1 _ |a Miersch, Christian
|b 2
700 1 _ |a Schubert, Jürgen
|0 P:(DE-Juel1)128631
|b 3
700 1 _ |a Heitmann, Johannes
|b 4
773 _ _ |a 10.1063/5.0037692
|g Vol. 118, no. 5, p. 052902 -
|0 PERI:(DE-600)1469436-0
|n 5
|p 052902 -
|t Applied physics letters
|v 118
|y 2021
|x 0003-6951
856 4 _ |u https://juser.fz-juelich.de/record/903133/files/ALGaN-GaN-Freiberg-APL.pdf
|y Published on 2021-02-01. Available in OpenAccess from 2022-02-01.
909 C O |o oai:juser.fz-juelich.de:903133
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0003-0492-9696
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128631
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS LETT : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21