000903134 001__ 903134
000903134 005__ 20220103172039.0
000903134 0247_ $$2doi$$a10.1063/5.0034648
000903134 0247_ $$2Handle$$a2128/29404
000903134 0247_ $$2altmetric$$aaltmetric:100324723
000903134 0247_ $$2WOS$$aWOS:000630910000001
000903134 037__ $$aFZJ-2021-04858
000903134 082__ $$a600
000903134 1001_ $$0P:(DE-HGF)0$$aSuyolcu, Y. Eren$$b0
000903134 245__ $$aa -axis YBa 2 Cu 3 O 7− x /PrBa 2 Cu 3 O 7− x /YBa 2 Cu 3 O 7− x trilayers with subnanometer rms roughness
000903134 260__ $$aMelville, NY$$bAIP Publ.$$c2021
000903134 3367_ $$2DRIVER$$aarticle
000903134 3367_ $$2DataCite$$aOutput Types/Journal article
000903134 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638976963_27262
000903134 3367_ $$2BibTeX$$aARTICLE
000903134 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903134 3367_ $$00$$2EndNote$$aJournal Article
000903134 520__ $$aWe demonstrate a-axis YBa 2 Cu 3 O 7−x /PrBa 2 Cu 3 O 7−x /YBa 2 Cu 3 O 7−x trilayers grown on (100) LaAlO 3 substrates with improved interfacesmoothness. The trilayers are synthesized by ozone-assisted molecular-beam epitaxy. The thickness of the PrBa 2 Cu 3 O 7−x layer is held con-stant at 8 nm, and the thickness of the YBa 2 Cu 3 O 7−x layers is varied from 24 nm to 100 nm. X-ray diffraction measurements show all trilayersto have >97% a-axis content. The rms roughness of the thinnest trilayer is <0.7 nm, and this roughness increases with the thickness of theYBa 2 Cu 3 O 7−x layers. The thickness of the YBa 2 Cu 3 O 7−x layers also affects the transport properties: while all samples exhibit an onset of thesuperconducting transition at and above 85 K, the thinner samples show wider transition widths, ΔT c . High-resolution scanning transmissionelectron microscopy reveals coherent and chemically sharp interfaces and that growth begins with a cubic (Y,Ba)CuO 3−x perovskite phase thattransforms into a-axis oriented YBa 2 Cu 3 O 7−x as the substrate temperature is ramped up.
000903134 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000903134 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903134 7001_ $$0P:(DE-HGF)0$$aSun, Jiaxin$$b1
000903134 7001_ $$00000-0003-0948-7698$$aGoodge, Berit H.$$b2
000903134 7001_ $$00000-0002-6305-7560$$aPark, Jisung$$b3
000903134 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b4
000903134 7001_ $$0P:(DE-HGF)0$$aKourkoutis, Lena F.$$b5
000903134 7001_ $$00000-0003-2493-6113$$aSchlom, Darrell G.$$b6$$eCorresponding author
000903134 773__ $$0PERI:(DE-600)2722985-3$$a10.1063/5.0034648$$gVol. 9, no. 2, p. 021117 -$$n2$$p021117 -$$tAPL materials$$v9$$x2166-532X$$y2021
000903134 8564_ $$uhttps://juser.fz-juelich.de/record/903134/files/APL_a-Achsen%20YBCO_Cornell.pdf$$yOpenAccess
000903134 909CO $$ooai:juser.fz-juelich.de:903134$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903134 9101_ $$0I:(DE-HGF)0$$60000-0003-0948-7698$$aExternal Institute$$b2$$kExtern
000903134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich$$b4$$kFZJ
000903134 9101_ $$0I:(DE-HGF)0$$60000-0003-2493-6113$$aExternal Institute$$b6$$kExtern
000903134 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000903134 9141_ $$y2021
000903134 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-05
000903134 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-05
000903134 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-05
000903134 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903134 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPL MATER : 2019$$d2021-02-05
000903134 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-05
000903134 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-05
000903134 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-05
000903134 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-05
000903134 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-05
000903134 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-05
000903134 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903134 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-05
000903134 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-05
000903134 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-05
000903134 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-05
000903134 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-05
000903134 920__ $$lyes
000903134 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000903134 980__ $$ajournal
000903134 980__ $$aVDB
000903134 980__ $$aUNRESTRICTED
000903134 980__ $$aI:(DE-Juel1)PGI-9-20110106
000903134 9801_ $$aFullTexts