000903135 001__ 903135
000903135 005__ 20240712101057.0
000903135 0247_ $$2doi$$a10.5194/acp-2021-672
000903135 0247_ $$2Handle$$a2128/29280
000903135 0247_ $$2altmetric$$aaltmetric:112632343
000903135 037__ $$aFZJ-2021-04859
000903135 082__ $$a550
000903135 1001_ $$00000-0002-2172-3588$$aKim, Dongwook$$b0
000903135 245__ $$aField observational constraints on the controllers in glyoxal (CHOCHO) loss to aerosol
000903135 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000903135 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1638447949_17873
000903135 3367_ $$2ORCID$$aWORKING_PAPER
000903135 3367_ $$028$$2EndNote$$aElectronic Article
000903135 3367_ $$2DRIVER$$apreprint
000903135 3367_ $$2BibTeX$$aARTICLE
000903135 3367_ $$2DataCite$$aOutput Types/Working Paper
000903135 520__ $$aAbstract. Glyoxal (CHOCHO), the simplest dicarbonyl in the troposphere, is an important precursor for secondary organic aerosol (SOA) and brown carbon (BrC) affecting air-quality and climate. The airborne measurement of CHOCHO concentrations during the KORUS-AQ (KORea-US Air Quality study) campaign in 2016 enables detailed quantification of  loss mechanisms, pertaining to SOA formation in the real atmosphere. The production of this molecule was mainly from oxidation of aromatics (59 %) initiated by hydroxyl radical (OH), of which glyoxal forming mechanisms are relatively well constrained. CHOCHO loss to aerosol was found to be the most important removal path (69 %) and contributed to roughly ~20 % (3.7 μg sm−3 ppmv−1 hr−1, normalized with excess CO) of SOA growth in the first 6 hours in Seoul Metropolitan Area. To our knowledge, we show the first field observation of aerosol surface-area (Asurf)-dependent CHOCHO uptake, which  diverges from the simple surface uptake assumption as Asurf increases in ambient condition. Specifically, under the low (high) aerosol loading, the CHOCHO effective uptake rate coefficient, keff,uptake, linearly increases (levels off) with Asurf, thus, the irreversible surface uptake is a reasonable (unreasonable) approximation for simulating CHOCHO loss to aerosol. Dependency of photochemical impact, as well as aerosol viscosity, are discussed as other possible factors influencing CHOCHO uptake rate. Our inferred Henry's law coefficient of CHOCHO, 7.0 × 108 M atm−1, is ~2 orders of magnitude  higher than those estimated from salting-in effects constrained by inorganic salts only, which urges more understanding on CHOCHO solubility under real atmospheric conditions.
000903135 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000903135 588__ $$aDataset connected to CrossRef
000903135 7001_ $$0P:(DE-Juel1)174162$$aCho, Changmin$$b1
000903135 7001_ $$0P:(DE-HGF)0$$aJeong, Seokhan$$b2
000903135 7001_ $$0P:(DE-HGF)0$$aLee, Soojin$$b3
000903135 7001_ $$00000-0001-9464-4787$$aNault, Benjamin A.$$b4
000903135 7001_ $$00000-0003-3930-010X$$aCampuzano-Jost, Pedro$$b5
000903135 7001_ $$00000-0003-3213-4233$$aDay, Douglas A.$$b6
000903135 7001_ $$00000-0001-9749-151X$$aSchroder, Jason C.$$b7
000903135 7001_ $$00000-0001-6203-1847$$aJimenez, Jose L.$$b8
000903135 7001_ $$00000-0002-0899-1369$$aVolkamer, Rainer$$b9
000903135 7001_ $$0P:(DE-HGF)0$$aBlake, Donald R.$$b10
000903135 7001_ $$0P:(DE-HGF)0$$aWisthaler, Armin$$b11
000903135 7001_ $$0P:(DE-HGF)0$$aFried, Alan$$b12
000903135 7001_ $$00000-0002-6764-8624$$aDiGangi, Joshua P.$$b13
000903135 7001_ $$00000-0002-3617-0269$$aDiskin, Glenn S.$$b14
000903135 7001_ $$0P:(DE-HGF)0$$aPusede, Sally E.$$b15
000903135 7001_ $$0P:(DE-HGF)0$$aHall, Samuel R.$$b16
000903135 7001_ $$0P:(DE-HGF)0$$aUllmann, Kirk$$b17
000903135 7001_ $$00000-0002-0518-7690$$aHuey, L. Gregory$$b18
000903135 7001_ $$0P:(DE-HGF)0$$aTanner, David J.$$b19
000903135 7001_ $$0P:(DE-HGF)0$$aDibb, Jack$$b20
000903135 7001_ $$00000-0001-9105-9179$$aKnote, Christoph J.$$b21
000903135 7001_ $$0P:(DE-HGF)0$$aMin, Kyung-Eun$$b22$$eCorresponding author
000903135 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2021-672$$tAtmospheric chemistry and physics / Discussions$$x1680-7367$$y2021
000903135 8564_ $$uhttps://juser.fz-juelich.de/record/903135/files/acp-2021-672.pdf$$yOpenAccess
000903135 909CO $$ooai:juser.fz-juelich.de:903135$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903135 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174162$$aForschungszentrum Jülich$$b1$$kFZJ
000903135 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000903135 9141_ $$y2021
000903135 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903135 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-08
000903135 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903135 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000903135 9801_ $$aFullTexts
000903135 980__ $$apreprint
000903135 980__ $$aVDB
000903135 980__ $$aUNRESTRICTED
000903135 980__ $$aI:(DE-Juel1)IEK-8-20101013
000903135 981__ $$aI:(DE-Juel1)ICE-3-20101013