001     903135
005     20240712101057.0
024 7 _ |a 10.5194/acp-2021-672
|2 doi
024 7 _ |a 2128/29280
|2 Handle
024 7 _ |a altmetric:112632343
|2 altmetric
037 _ _ |a FZJ-2021-04859
082 _ _ |a 550
100 1 _ |a Kim, Dongwook
|0 0000-0002-2172-3588
|b 0
245 _ _ |a Field observational constraints on the controllers in glyoxal (CHOCHO) loss to aerosol
260 _ _ |a Katlenburg-Lindau
|c 2021
|b EGU
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1638447949_17873
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Abstract. Glyoxal (CHOCHO), the simplest dicarbonyl in the troposphere, is an important precursor for secondary organic aerosol (SOA) and brown carbon (BrC) affecting air-quality and climate. The airborne measurement of CHOCHO concentrations during the KORUS-AQ (KORea-US Air Quality study) campaign in 2016 enables detailed quantification of  loss mechanisms, pertaining to SOA formation in the real atmosphere. The production of this molecule was mainly from oxidation of aromatics (59 %) initiated by hydroxyl radical (OH), of which glyoxal forming mechanisms are relatively well constrained. CHOCHO loss to aerosol was found to be the most important removal path (69 %) and contributed to roughly ~20 % (3.7 μg sm−3 ppmv−1 hr−1, normalized with excess CO) of SOA growth in the first 6 hours in Seoul Metropolitan Area. To our knowledge, we show the first field observation of aerosol surface-area (Asurf)-dependent CHOCHO uptake, which  diverges from the simple surface uptake assumption as Asurf increases in ambient condition. Specifically, under the low (high) aerosol loading, the CHOCHO effective uptake rate coefficient, keff,uptake, linearly increases (levels off) with Asurf, thus, the irreversible surface uptake is a reasonable (unreasonable) approximation for simulating CHOCHO loss to aerosol. Dependency of photochemical impact, as well as aerosol viscosity, are discussed as other possible factors influencing CHOCHO uptake rate. Our inferred Henry's law coefficient of CHOCHO, 7.0 × 108 M atm−1, is ~2 orders of magnitude  higher than those estimated from salting-in effects constrained by inorganic salts only, which urges more understanding on CHOCHO solubility under real atmospheric conditions.
536 _ _ |a 2111 - Air Quality (POF4-211)
|0 G:(DE-HGF)POF4-2111
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cho, Changmin
|0 P:(DE-Juel1)174162
|b 1
700 1 _ |a Jeong, Seokhan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lee, Soojin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Nault, Benjamin A.
|0 0000-0001-9464-4787
|b 4
700 1 _ |a Campuzano-Jost, Pedro
|0 0000-0003-3930-010X
|b 5
700 1 _ |a Day, Douglas A.
|0 0000-0003-3213-4233
|b 6
700 1 _ |a Schroder, Jason C.
|0 0000-0001-9749-151X
|b 7
700 1 _ |a Jimenez, Jose L.
|0 0000-0001-6203-1847
|b 8
700 1 _ |a Volkamer, Rainer
|0 0000-0002-0899-1369
|b 9
700 1 _ |a Blake, Donald R.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Wisthaler, Armin
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Fried, Alan
|0 P:(DE-HGF)0
|b 12
700 1 _ |a DiGangi, Joshua P.
|0 0000-0002-6764-8624
|b 13
700 1 _ |a Diskin, Glenn S.
|0 0000-0002-3617-0269
|b 14
700 1 _ |a Pusede, Sally E.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Hall, Samuel R.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Ullmann, Kirk
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Huey, L. Gregory
|0 0000-0002-0518-7690
|b 18
700 1 _ |a Tanner, David J.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Dibb, Jack
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Knote, Christoph J.
|0 0000-0001-9105-9179
|b 21
700 1 _ |a Min, Kyung-Eun
|0 P:(DE-HGF)0
|b 22
|e Corresponding author
773 _ _ |a 10.5194/acp-2021-672
|0 PERI:(DE-600)2069857-4
|x 1680-7367
|y 2021
|t Atmospheric chemistry and physics / Discussions
856 4 _ |u https://juser.fz-juelich.de/record/903135/files/acp-2021-672.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903135
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174162
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2111
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-08
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21