001     903136
005     20220103172053.0
024 7 _ |a 10.1063/5.0049334
|2 doi
024 7 _ |a 2128/29396
|2 Handle
024 7 _ |a altmetric:105760198
|2 altmetric
024 7 _ |a WOS:000705895700002
|2 WOS
037 _ _ |a FZJ-2021-04860
082 _ _ |a 600
100 1 _ |a Hensling, Felix V. E.
|0 P:(DE-Juel1)165926
|b 0
|e Corresponding author
245 _ _ |a Epitaxial stannate pyrochlore thin films: Limitations of cation stoichiometry and electron doping
260 _ _ |a Melville, NY
|c 2021
|b AIP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638969924_15940
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We have studied the growth of epitaxial films of stannate pyrochlores with a general formula A 2 Sn 2 O 7 (A = La and Y) and find that itis possible to incorporate ∼ 25% excess of the A-site constituent; in contrast, any tin excess is expelled. We unravel the defect chemistry,allowing for the incorporation of excess A-site species and the mechanism behind the tin expulsion. An A-site surplus is manifested by ashift in the film diffraction peaks, and the expulsion of tin is apparent from the surface morphology of the film. In an attempt to increaseLa 2 Sn 2 O 7 conductivity through n-type doping, substantial quantities of tin have been substituted by antimony while maintaining good filmquality. The sample remained insulating as explained by first-principles computations, showing that both the oxygen vacancy and antimony-on-tin substitutional defects are deep. Similar conclusions are drawn on Y 2 Sn 2 O 7 . An alternative n-type dopant, fluorine on oxygen, is shallowaccording to computations and more likely to lead to electrical conductivity. The bandgaps of stoichiometric La 2 Sn 2 O 7 and Y 2 Sn 2 O 7 filmswere determined by spectroscopic ellipsometry to be 4.2 eV and 4.48 eV, respectively.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Dahliah, Diana
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Dulal, Prabin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Singleton, Patrick
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sun, Jiaxin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schubert, Jürgen
|0 P:(DE-Juel1)128631
|b 5
700 1 _ |a Paik, Hanjong
|0 0000-0002-8363-4679
|b 6
700 1 _ |a Subedi, Indra
|0 0000-0003-2300-6010
|b 7
700 1 _ |a Subedi, Biwas
|0 0000-0002-7690-0406
|b 8
700 1 _ |a Rignanese, Gian-Marco
|0 0000-0002-1422-1205
|b 9
700 1 _ |a Podraza, Nikolas J.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Hautier, Geoffroy
|0 0000-0003-1754-2220
|b 11
700 1 _ |a Schlom, Darrell G.
|0 0000-0003-2493-6113
|b 12
773 _ _ |a 10.1063/5.0049334
|g Vol. 9, no. 5, p. 051113 -
|0 PERI:(DE-600)2722985-3
|n 5
|p 051113 -
|t APL materials
|v 9
|y 2021
|x 2166-532X
856 4 _ |u https://juser.fz-juelich.de/record/903136/files/Felix%20Hensling%20Stannate.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903136
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-Juel1)165926
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128631
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 0000-0002-8363-4679
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 0000-0003-2300-6010
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 0000-0002-7690-0406
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 0000-0002-1422-1205
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 0000-0003-1754-2220
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 0000-0003-2493-6113
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APL MATER : 2019
|d 2021-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-02-05
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21