000903140 001__ 903140
000903140 005__ 20240712101057.0
000903140 0247_ $$2doi$$a10.5194/acp-2021-448
000903140 0247_ $$2Handle$$a2128/29282
000903140 0247_ $$2altmetric$$aaltmetric:108875847
000903140 037__ $$aFZJ-2021-04864
000903140 1001_ $$0P:(DE-HGF)0$$aOsborne, Martin John$$b0$$eCorresponding author
000903140 245__ $$aThe 2019 Raikoke volcanic eruption part 2: Particle phase dispersion and concurrent wildfire smoke emissions
000903140 260__ $$c2021
000903140 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1638448634_16994
000903140 3367_ $$2ORCID$$aWORKING_PAPER
000903140 3367_ $$028$$2EndNote$$aElectronic Article
000903140 3367_ $$2DRIVER$$apreprint
000903140 3367_ $$2BibTeX$$aARTICLE
000903140 3367_ $$2DataCite$$aOutput Types/Working Paper
000903140 520__ $$aAbstract. Between 27 June and 14 July 2019 aerosol layers were observed by the United Kingdom (UK) Raman lidar network in the upper troposphere and lower stratosphere. The arrival of these aerosol layers in late June caused some concern within the London Volcanic Ash Advisory Centre (VAAC) as according to dispersion simulations the volcanic plume from the 21 June 2019 eruption of Raikoke was not expected over the UK until early July. Using dispersion simulations from the Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME), and supporting evidence from satellite and in-situ aircraft observations, we show that the early arrival of the stratospheric layers was not due to aerosols from the explosive eruption of the Raikoke volcano, but due to biomass burning smoke aerosols associated with intense forest fires in Alberta, Canada that occurred four days prior to the Raikoke eruption. We use the observations and model simulations to describe the dispersion of both the volcanic and forest fire aerosol clouds, and estimate that the initial Raikoke ash aerosol cloud contained around 15 Tg of volcanic ash, and that the forest fires produced around 0.2 Tg of biomass burning aerosol. The operational monitoring of volcanic aerosol clouds is a vital capability in terms of aviation safety and the synergy of NAME dispersion simulations and lidar data with depolarising capabilities allowed scientists at the Met Office to interpret the various aerosol layers over the UK, and attribute the material to their sources. The use of NAME allowed the identification of the observed stratospheric layers that reached the UK on 27 June as biomass burning aerosol, characterised by a particle linear depolarisation ratio of 9 %, whereas with the lidar alone the latter could have been identified as the early arrival of a volcanic ash/sulphate mixed aerosol cloud. In the case under study, given the low concentration estimates, the exact identification of the aerosol layers would have made little substantive difference to the decision making process within the London VAAC. However, our work shows how the use of dispersion modelling together with multiple observation sources enabled us to create a more complete description of atmospheric aerosol loading.
000903140 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000903140 588__ $$aDataset connected to CrossRef
000903140 7001_ $$00000-0003-3062-9152$$ade Leeuw, Johannes$$b1
000903140 7001_ $$0P:(DE-HGF)0$$aWitham, Claire$$b2
000903140 7001_ $$00000-0001-8759-2843$$aSchmidt, Anja$$b3
000903140 7001_ $$00000-0001-9033-3930$$aBeckett, Frances$$b4
000903140 7001_ $$0P:(DE-HGF)0$$aKristiansen, Nina$$b5
000903140 7001_ $$0P:(DE-HGF)0$$aBuxmann, Joelle$$b6
000903140 7001_ $$0P:(DE-HGF)0$$aSaint, Cameron$$b7
000903140 7001_ $$0P:(DE-HGF)0$$aWelton, Ellsworth J.$$b8
000903140 7001_ $$0P:(DE-HGF)0$$aFochesatto, Javier$$b9
000903140 7001_ $$0P:(DE-Juel1)180651$$aGomes, Ana R.$$b10$$ufzj
000903140 7001_ $$0P:(DE-Juel1)159541$$aBundke, Ulrich$$b11
000903140 7001_ $$0P:(DE-Juel1)136669$$aPetzold, Andreas$$b12
000903140 7001_ $$00000-0002-1833-1102$$aMarenco, Franco$$b13
000903140 7001_ $$0P:(DE-HGF)0$$aHaywood, Jim$$b14
000903140 773__ $$a10.5194/acp-2021-448
000903140 8564_ $$uhttps://juser.fz-juelich.de/record/903140/files/acp-2021-448.pdf$$yOpenAccess
000903140 909CO $$ooai:juser.fz-juelich.de:903140$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180651$$aForschungszentrum Jülich$$b10$$kFZJ
000903140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159541$$aForschungszentrum Jülich$$b11$$kFZJ
000903140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136669$$aForschungszentrum Jülich$$b12$$kFZJ
000903140 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000903140 9141_ $$y2021
000903140 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903140 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903140 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000903140 9801_ $$aFullTexts
000903140 980__ $$apreprint
000903140 980__ $$aVDB
000903140 980__ $$aUNRESTRICTED
000903140 980__ $$aI:(DE-Juel1)IEK-8-20101013
000903140 981__ $$aI:(DE-Juel1)ICE-3-20101013