000903141 001__ 903141
000903141 005__ 20240712101009.0
000903141 0247_ $$2doi$$a10.5194/amt-2021-284
000903141 0247_ $$2Handle$$a2128/29283
000903141 037__ $$aFZJ-2021-04865
000903141 082__ $$a550
000903141 1001_ $$0P:(DE-Juel1)176120$$aWeber, Patrick$$b0
000903141 245__ $$aRelative errors of derived multi-wavelengths intensive aerosol optical properties using CAPS_SSA, Nephelometer and TAP measurements
000903141 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2021
000903141 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1638449284_14178
000903141 3367_ $$2ORCID$$aWORKING_PAPER
000903141 3367_ $$028$$2EndNote$$aElectronic Article
000903141 3367_ $$2DRIVER$$apreprint
000903141 3367_ $$2BibTeX$$aARTICLE
000903141 3367_ $$2DataCite$$aOutput Types/Working Paper
000903141 520__ $$aAbstract. Aerosol intensive optical properties like the Ångström exponents for aerosol light extinction, scattering and absorption, or the single-scattering albedo are indicators for aerosol size distributions, chemical composition and radiative behaviour and contain also source information. The observation of these parameters requires the measurement of aerosol optical properties at multiple wavelengths which usually implies the use of several instruments. Our study aims to quantify the uncertainties of the determination of multiple-wavelengths intensive properties by an optical closure approach, using different test aerosols. In our laboratory study, we measured the full set of aerosol optical properties for a range of light-absorbing aerosols with different properties, mixed externally with ammonium sulphate to generate aerosols of controlled single-scattering albedo. The investigated aerosol types were: fresh combustion soot emitted by an inverted flame soot generator (SOOT, fractal aggregates), Aquadag (AQ, spherical shape), Cabot industrial soot (BC, compact clusters), and an acrylic paint (Magic Black, MB). One focus was on the validity of the Differential Method (DM: absorption = extinction minus scattering) for the determination of Ångström exponents for different particle loads and mixtures of light-absorbing aerosol with ammonium sulphate, in comparison to data obtained from single instruments. The instruments used in this study were two CAPS PMssa (Cavity Attenuated Phase Shift Single Scattering Albedo, λ = 450, 630 nm) for light extinction and scattering coefficients, one Integrating Nephelometer (λ = 450, 550, 700 nm) for light scattering coefficient and one Tricolour Absorption Photometer (TAP, λ = 467, 528, 652 nm) for filter-based light absorption coefficient measurement. Our key finding is that the coefficients of light absorption σap, scattering σsp and extinction σep from the Differential Method agree with data from single reference instruments, and the slopes of regression lines equal unity within the precision error. We found, however, that the precision error for the DM suppresses 100 % for σap values lower than 10–20 Mm−1 for atmospheric relevant single scattering albedo. This increasing uncertainty with decreasing σap yields an absorption Ångström exponent (AAE) that is too uncertain for measurements in the range of atmospheric aerosol loadings. We recommend using DM only for measuring AAE values for σap > 50 Mm−1. Ångström exponents for scattering and extinction are reliable for extinction coefficients from 20 up to 1000 Mm−1 and stay within 10 % deviation from reference instruments, regardless of the chosen method. Single-scattering albedo (SSA) values for 450 nm and 630 nm wavelengths agree with values from the reference method σsp (NEPH)/σep (CAPS PMSSA) with less than 10 % uncertainty for all instrument combinations and sampled aerosol types which fulfil the proposed goal for measurement uncertainty of 10 % proposed by Laj et al., 2020 for GCOS (Global Climate Observing System) applications.
000903141 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000903141 588__ $$aDataset connected to CrossRef
000903141 7001_ $$0P:(DE-Juel1)136669$$aPetzold, Andreas$$b1
000903141 7001_ $$0P:(DE-Juel1)172939$$aBischof, Oliver Felix$$b2$$ufzj
000903141 7001_ $$0P:(DE-Juel1)167513$$aFischer, Benedikt$$b3$$ufzj
000903141 7001_ $$0P:(DE-Juel1)129176$$aBerg, Marcel$$b4$$ufzj
000903141 7001_ $$00000-0002-5598-6626$$aFreedman, Andrew$$b5
000903141 7001_ $$00000-0001-7796-7840$$aOnasch, Timothy$$b6
000903141 7001_ $$0P:(DE-Juel1)159541$$aBundke, Ulrich$$b7$$eCorresponding author
000903141 773__ $$0PERI:(DE-600)2507817-3$$a10.5194/amt-2021-284$$tAtmospheric measurement techniques discussions$$x1867-8610$$y2021
000903141 8564_ $$uhttps://juser.fz-juelich.de/record/903141/files/amt-2021-284.pdf$$yOpenAccess
000903141 909CO $$ooai:juser.fz-juelich.de:903141$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176120$$aForschungszentrum Jülich$$b0$$kFZJ
000903141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136669$$aForschungszentrum Jülich$$b1$$kFZJ
000903141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172939$$aForschungszentrum Jülich$$b2$$kFZJ
000903141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167513$$aForschungszentrum Jülich$$b3$$kFZJ
000903141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129176$$aForschungszentrum Jülich$$b4$$kFZJ
000903141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159541$$aForschungszentrum Jülich$$b7$$kFZJ
000903141 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000903141 9141_ $$y2021
000903141 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903141 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903141 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-15
000903141 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-15
000903141 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000903141 9801_ $$aFullTexts
000903141 980__ $$apreprint
000903141 980__ $$aVDB
000903141 980__ $$aUNRESTRICTED
000903141 980__ $$aI:(DE-Juel1)IEK-8-20101013
000903141 981__ $$aI:(DE-Juel1)ICE-3-20101013