001     903141
005     20240712101009.0
024 7 _ |a 10.5194/amt-2021-284
|2 doi
024 7 _ |a 2128/29283
|2 Handle
037 _ _ |a FZJ-2021-04865
082 _ _ |a 550
100 1 _ |a Weber, Patrick
|0 P:(DE-Juel1)176120
|b 0
245 _ _ |a Relative errors of derived multi-wavelengths intensive aerosol optical properties using CAPS_SSA, Nephelometer and TAP measurements
260 _ _ |a Katlenburg-Lindau
|c 2021
|b Copernicus
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1638449284_14178
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Abstract. Aerosol intensive optical properties like the Ångström exponents for aerosol light extinction, scattering and absorption, or the single-scattering albedo are indicators for aerosol size distributions, chemical composition and radiative behaviour and contain also source information. The observation of these parameters requires the measurement of aerosol optical properties at multiple wavelengths which usually implies the use of several instruments. Our study aims to quantify the uncertainties of the determination of multiple-wavelengths intensive properties by an optical closure approach, using different test aerosols. In our laboratory study, we measured the full set of aerosol optical properties for a range of light-absorbing aerosols with different properties, mixed externally with ammonium sulphate to generate aerosols of controlled single-scattering albedo. The investigated aerosol types were: fresh combustion soot emitted by an inverted flame soot generator (SOOT, fractal aggregates), Aquadag (AQ, spherical shape), Cabot industrial soot (BC, compact clusters), and an acrylic paint (Magic Black, MB). One focus was on the validity of the Differential Method (DM: absorption = extinction minus scattering) for the determination of Ångström exponents for different particle loads and mixtures of light-absorbing aerosol with ammonium sulphate, in comparison to data obtained from single instruments. The instruments used in this study were two CAPS PMssa (Cavity Attenuated Phase Shift Single Scattering Albedo, λ = 450, 630 nm) for light extinction and scattering coefficients, one Integrating Nephelometer (λ = 450, 550, 700 nm) for light scattering coefficient and one Tricolour Absorption Photometer (TAP, λ = 467, 528, 652 nm) for filter-based light absorption coefficient measurement. Our key finding is that the coefficients of light absorption σap, scattering σsp and extinction σep from the Differential Method agree with data from single reference instruments, and the slopes of regression lines equal unity within the precision error. We found, however, that the precision error for the DM suppresses 100 % for σap values lower than 10–20 Mm−1 for atmospheric relevant single scattering albedo. This increasing uncertainty with decreasing σap yields an absorption Ångström exponent (AAE) that is too uncertain for measurements in the range of atmospheric aerosol loadings. We recommend using DM only for measuring AAE values for σap > 50 Mm−1. Ångström exponents for scattering and extinction are reliable for extinction coefficients from 20 up to 1000 Mm−1 and stay within 10 % deviation from reference instruments, regardless of the chosen method. Single-scattering albedo (SSA) values for 450 nm and 630 nm wavelengths agree with values from the reference method σsp (NEPH)/σep (CAPS PMSSA) with less than 10 % uncertainty for all instrument combinations and sampled aerosol types which fulfil the proposed goal for measurement uncertainty of 10 % proposed by Laj et al., 2020 for GCOS (Global Climate Observing System) applications.
536 _ _ |a 2111 - Air Quality (POF4-211)
|0 G:(DE-HGF)POF4-2111
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Petzold, Andreas
|0 P:(DE-Juel1)136669
|b 1
700 1 _ |a Bischof, Oliver Felix
|0 P:(DE-Juel1)172939
|b 2
|u fzj
700 1 _ |a Fischer, Benedikt
|0 P:(DE-Juel1)167513
|b 3
|u fzj
700 1 _ |a Berg, Marcel
|0 P:(DE-Juel1)129176
|b 4
|u fzj
700 1 _ |a Freedman, Andrew
|0 0000-0002-5598-6626
|b 5
700 1 _ |a Onasch, Timothy
|0 0000-0001-7796-7840
|b 6
700 1 _ |a Bundke, Ulrich
|0 P:(DE-Juel1)159541
|b 7
|e Corresponding author
773 _ _ |a 10.5194/amt-2021-284
|0 PERI:(DE-600)2507817-3
|x 1867-8610
|y 2021
|t Atmospheric measurement techniques discussions
856 4 _ |u https://juser.fz-juelich.de/record/903141/files/amt-2021-284.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903141
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176120
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)136669
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172939
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)167513
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129176
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)159541
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2111
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-15
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21