000903145 001__ 903145
000903145 005__ 20240712101058.0
000903145 0247_ $$2doi$$a10.5194/gmd-2021-295
000903145 0247_ $$2Handle$$a2128/29290
000903145 0247_ $$2altmetric$$aaltmetric:114218594
000903145 037__ $$aFZJ-2021-04869
000903145 082__ $$a910
000903145 1001_ $$00000-0003-2440-6104$$aPozzer, Andrea$$b0$$eCorresponding author
000903145 245__ $$aSimulation of organics in the atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) coupled to the ORACLE (v1.0) submodel
000903145 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2021
000903145 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1638452061_16994
000903145 3367_ $$2ORCID$$aWORKING_PAPER
000903145 3367_ $$028$$2EndNote$$aElectronic Article
000903145 3367_ $$2DRIVER$$apreprint
000903145 3367_ $$2BibTeX$$aARTICLE
000903145 3367_ $$2DataCite$$aOutput Types/Working Paper
000903145 520__ $$aAbstract. An updated and expanded representation of organics in the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) has been evaluated. First, the comprehensive Mainz Organic Mechanism (MOM) in the submodel MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) was activated with explicit degradation of organic species up to five carbon atoms and a simplified mechanism for larger molecules. Second, the ORACLE submodel (version 1.0) considers now condensation on aerosols for all organics in the mechanism. Parameterizations for aerosol yields are used only for the lumped species that are not included in the explicit mechanism. The simultaneous usage of MOM and ORACLE allows an efficient estimation, not only of the chemical degradation of the simulated volatile organic compounds, but also of the contribution of organics to the growth and fate of (organic) aerosol, with a complexity of the mechanism largely increased compared to EMAC simulations with more simplified chemistry. The model evaluation presented here reveals that the OH concentration is well reproduced globally, while significant biases for observed oxygenated organics are present. We also investigate the general properties of the aerosols and their composition, showing that the more sophisticated and process-oriented secondary aerosol formation does not degrade the good agreement of previous model configurations with observations at the surface, allowing further research in the field of gas-aerosol interactions.
000903145 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000903145 588__ $$aDataset connected to CrossRef
000903145 7001_ $$0P:(DE-HGF)0$$aReifenberg, Simon$$b1
000903145 7001_ $$00000-0002-8405-3470$$aKumar, Vinod$$b2
000903145 7001_ $$0P:(DE-Juel1)168550$$aFranco, Bruno$$b3
000903145 7001_ $$0P:(DE-Juel1)167439$$aTaraborrelli, Domenico$$b4
000903145 7001_ $$00000-0002-2542-3005$$aGromov, Sergy$$b5
000903145 7001_ $$00000-0002-6517-5341$$aEhrhart, Sebastian$$b6
000903145 7001_ $$0P:(DE-Juel1)188765$$aJöckel, Patrick$$b7
000903145 7001_ $$0P:(DE-Juel1)180928$$aSander, Rolf$$b8
000903145 7001_ $$0P:(DE-HGF)0$$aFall, Veronica$$b9
000903145 7001_ $$0P:(DE-Juel1)173788$$aRosanka, Simon$$b10
000903145 7001_ $$0P:(DE-Juel1)176592$$aKarydis, Vlassis$$b11
000903145 7001_ $$00000-0003-3104-5271$$aAkritidis, Dimitris$$b12
000903145 7001_ $$0P:(DE-Juel1)174161$$aEmmerichs, Tamara$$b13
000903145 7001_ $$0P:(DE-HGF)0$$aCrippa, Monica$$b14
000903145 7001_ $$0P:(DE-HGF)0$$aGuizzardi, Diego$$b15
000903145 7001_ $$00000-0003-3696-9123$$aKaiser, Johannes W.$$b16
000903145 7001_ $$00000-0002-8805-2141$$aClarisse, Lieven$$b17
000903145 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b18
000903145 7001_ $$00000-0002-3105-4306$$aTost, Holger$$b19
000903145 7001_ $$0P:(DE-Juel1)178035$$aTsimpidi, Alexandra$$b20$$ufzj
000903145 773__ $$0PERI:(DE-600)2456729-2$$a10.5194/gmd-2021-295$$tGeoscientific model development discussions$$x1991-9611$$y2021
000903145 8564_ $$uhttps://juser.fz-juelich.de/record/903145/files/gmd-2021-295.pdf$$yOpenAccess
000903145 909CO $$ooai:juser.fz-juelich.de:903145$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167439$$aForschungszentrum Jülich$$b4$$kFZJ
000903145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188765$$aForschungszentrum Jülich$$b7$$kFZJ
000903145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180928$$aForschungszentrum Jülich$$b8$$kFZJ
000903145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173788$$aForschungszentrum Jülich$$b10$$kFZJ
000903145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176592$$aForschungszentrum Jülich$$b11$$kFZJ
000903145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174161$$aForschungszentrum Jülich$$b13$$kFZJ
000903145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b18$$kFZJ
000903145 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178035$$aForschungszentrum Jülich$$b20$$kFZJ
000903145 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000903145 9141_ $$y2021
000903145 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903145 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903145 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-02
000903145 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-02
000903145 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000903145 9801_ $$aFullTexts
000903145 980__ $$apreprint
000903145 980__ $$aVDB
000903145 980__ $$aUNRESTRICTED
000903145 980__ $$aI:(DE-Juel1)IEK-8-20101013
000903145 981__ $$aI:(DE-Juel1)ICE-3-20101013