001     903145
005     20240712101058.0
024 7 _ |a 10.5194/gmd-2021-295
|2 doi
024 7 _ |a 2128/29290
|2 Handle
024 7 _ |a altmetric:114218594
|2 altmetric
037 _ _ |a FZJ-2021-04869
082 _ _ |a 910
100 1 _ |a Pozzer, Andrea
|0 0000-0003-2440-6104
|b 0
|e Corresponding author
245 _ _ |a Simulation of organics in the atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) coupled to the ORACLE (v1.0) submodel
260 _ _ |a Katlenburg-Lindau
|c 2021
|b Copernicus
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1638452061_16994
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Abstract. An updated and expanded representation of organics in the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) has been evaluated. First, the comprehensive Mainz Organic Mechanism (MOM) in the submodel MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) was activated with explicit degradation of organic species up to five carbon atoms and a simplified mechanism for larger molecules. Second, the ORACLE submodel (version 1.0) considers now condensation on aerosols for all organics in the mechanism. Parameterizations for aerosol yields are used only for the lumped species that are not included in the explicit mechanism. The simultaneous usage of MOM and ORACLE allows an efficient estimation, not only of the chemical degradation of the simulated volatile organic compounds, but also of the contribution of organics to the growth and fate of (organic) aerosol, with a complexity of the mechanism largely increased compared to EMAC simulations with more simplified chemistry. The model evaluation presented here reveals that the OH concentration is well reproduced globally, while significant biases for observed oxygenated organics are present. We also investigate the general properties of the aerosols and their composition, showing that the more sophisticated and process-oriented secondary aerosol formation does not degrade the good agreement of previous model configurations with observations at the surface, allowing further research in the field of gas-aerosol interactions.
536 _ _ |a 2111 - Air Quality (POF4-211)
|0 G:(DE-HGF)POF4-2111
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Reifenberg, Simon
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kumar, Vinod
|0 0000-0002-8405-3470
|b 2
700 1 _ |a Franco, Bruno
|0 P:(DE-Juel1)168550
|b 3
700 1 _ |a Taraborrelli, Domenico
|0 P:(DE-Juel1)167439
|b 4
700 1 _ |a Gromov, Sergy
|0 0000-0002-2542-3005
|b 5
700 1 _ |a Ehrhart, Sebastian
|0 0000-0002-6517-5341
|b 6
700 1 _ |a Jöckel, Patrick
|0 P:(DE-Juel1)188765
|b 7
700 1 _ |a Sander, Rolf
|0 P:(DE-Juel1)180928
|b 8
700 1 _ |a Fall, Veronica
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Rosanka, Simon
|0 P:(DE-Juel1)173788
|b 10
700 1 _ |a Karydis, Vlassis
|0 P:(DE-Juel1)176592
|b 11
700 1 _ |a Akritidis, Dimitris
|0 0000-0003-3104-5271
|b 12
700 1 _ |a Emmerichs, Tamara
|0 P:(DE-Juel1)174161
|b 13
700 1 _ |a Crippa, Monica
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Guizzardi, Diego
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Kaiser, Johannes W.
|0 0000-0003-3696-9123
|b 16
700 1 _ |a Clarisse, Lieven
|0 0000-0002-8805-2141
|b 17
700 1 _ |a Kiendler-Scharr, Astrid
|0 P:(DE-Juel1)4528
|b 18
700 1 _ |a Tost, Holger
|0 0000-0002-3105-4306
|b 19
700 1 _ |a Tsimpidi, Alexandra
|0 P:(DE-Juel1)178035
|b 20
|u fzj
773 _ _ |a 10.5194/gmd-2021-295
|0 PERI:(DE-600)2456729-2
|x 1991-9611
|y 2021
|t Geoscientific model development discussions
856 4 _ |u https://juser.fz-juelich.de/record/903145/files/gmd-2021-295.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903145
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)167439
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)188765
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)180928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)173788
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)176592
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)174161
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)4528
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)178035
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2111
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-02
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21