001     903147
005     20240918100833.0
024 7 _ |a 10.1021/acsearthspacechem.1c00296
|2 doi
024 7 _ |a 10.34734/FZJ-2021-04871
|2 datacite_doi
024 7 _ |a WOS:000757012400016
|2 WOS
037 _ _ |a FZJ-2021-04871
082 _ _ |a 550
100 1 _ |a Maclean, Adrian M.
|0 0000-0003-0901-5287
|b 0
245 _ _ |a Global Distribution of the Phase State and Mixing Times within Secondary Organic Aerosol Particles in the Troposphere Based on Room-Temperature Viscosity Measurements
260 _ _ |a Washington, DC
|c 2021
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725528644_6710
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Bitte Post-print ergänzen
520 _ _ |a Information on the global distributions of secondary organic aerosol (SOA) phase state and mixing times within SOA is needed to predict the impact of SOA on air quality, climate, and atmospheric chemistry; nevertheless, such information is rare. In this study, we developed parameterizations for viscosity as a function of relative humidity (RH) and temperature based on room-temperature viscosity data for simulated pine tree SOA and toluene SOA. The viscosity parameterizations were then used together with tropospheric RH and temperature fields to predict the SOA phase state and mixing times of water and organic molecules within SOA in the troposphere for 200 nm particles. Based on our results, the glassy state can often occur, and the mixing times of water can often exceed 1 h within SOA at altitudes >6 km. Furthermore, the mixing times of organic molecules within SOA can often exceed 1 h throughout most of the free troposphere (i.e., ≳1 km in altitude). In most of the planetary boundary layer (i.e., ≲1 km in altitude), the glassy state is not important, and the mixing times of water and organic molecules are less than 1 h. Our results are qualitatively consistent with the results from Shiraiwa et al. (Nat. Commun., 2017), although there are quantitative differences. Additional studies are needed to better understand the reasons for these differences.
536 _ _ |a 2111 - Air Quality (POF4-211)
|0 G:(DE-HGF)POF4-2111
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Li, Ying
|0 P:(DE-Juel1)184712
|b 1
700 1 _ |a Crescenzo, Giuseppe V.
|0 0000-0003-0936-3935
|b 2
700 1 _ |a Smith, Natalie R.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Karydis, Vlassis A.
|0 P:(DE-Juel1)176592
|b 4
|u fzj
700 1 _ |a Tsimpidi, Alexandra P.
|0 P:(DE-Juel1)178035
|b 5
|u fzj
700 1 _ |a Butenhoff, Christopher L.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Faiola, Celia L.
|0 0000-0002-4987-023X
|b 7
700 1 _ |a Lelieveld, Jos
|0 0000-0001-6307-3846
|b 8
700 1 _ |a Nizkorodov, Sergey A.
|0 0000-0003-0891-0052
|b 9
700 1 _ |a Shiraiwa, Manabu
|0 0000-0003-2532-5373
|b 10
700 1 _ |a Bertram, Allan K.
|0 0000-0002-5621-2323
|b 11
|e Corresponding author
773 _ _ |a 10.1021/acsearthspacechem.1c00296
|g p. acsearthspacechem.1c00296
|0 PERI:(DE-600)2883780-0
|n 12
|p 3458-
|t ACS earth and space chemistry
|v 5
|y 2021
|x 2472-3452
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/903147/files/Mixing%20in%20UT_revised_v2%20ms%20yl_vak.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/903147/files/acsearthspacechem.1c00296-1.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/903147/files/Mixing%20in%20UT_revised_v2%20ms%20yl_vak.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/903147/files/Mixing%20in%20UT_revised_v2%20ms%20yl_vak.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/903147/files/Mixing%20in%20UT_revised_v2%20ms%20yl_vak.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/903147/files/Mixing%20in%20UT_revised_v2%20ms%20yl_vak.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:903147
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)176592
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)178035
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2111
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS EARTH SPACE CHEM : 2019
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21