000903149 001__ 903149
000903149 005__ 20240712113037.0
000903149 0247_ $$2doi$$a10.1021/acsami.1c12079
000903149 0247_ $$2ISSN$$a1944-8244
000903149 0247_ $$2ISSN$$a1944-8252
000903149 0247_ $$2Handle$$a2128/33427
000903149 0247_ $$2pmid$$a34792348
000903149 0247_ $$2WOS$$aWOS:000751894800019
000903149 037__ $$aFZJ-2021-04873
000903149 041__ $$aEnglish
000903149 082__ $$a600
000903149 1001_ $$0P:(DE-Juel1)173965$$aRonsin, Olivier J. J.$$b0$$eCorresponding author
000903149 245__ $$aPhase-Field Simulation of Liquid–Vapor Equilibrium and Evaporation of Fluid Mixtures
000903149 260__ $$aWashington, DC$$bSoc.$$c2021
000903149 3367_ $$2DRIVER$$aarticle
000903149 3367_ $$2DataCite$$aOutput Types/Journal article
000903149 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673331398_3327
000903149 3367_ $$2BibTeX$$aARTICLE
000903149 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903149 3367_ $$00$$2EndNote$$aJournal Article
000903149 520__ $$aIn solution processing of thin films, the material layer is deposited from a solution composed of several solutes and solvents. The final morphology and hence the properties of the film often depend on the time needed for the evaporation of the solvents. This is typically the case for organic photoactive or electronic layers. Therefore, it is important to be able to predict the evaporation kinetics of such mixtures. We propose here a new phase-field model for the simulation of evaporating fluid mixtures and simulate their evaporation kinetics. Similar to the Hertz–Knudsen theory, the local liquid–vapor (LV) equilibrium is assumed to be reached at the film surface and evaporation is driven by diffusion away from this gas layer. In the situation where the evaporation is purely driven by the LV equilibrium, the simulations match the behavior expected theoretically from the free energy: for evaporation of pure solvents, the evaporation rate is constant and proportional to the vapor pressure. For mixtures, the evaporation rate is in general strongly time-dependent because of the changing composition of the film. Nevertheless, for highly nonideal mixtures, such as poorly compatible fluids or polymer solutions, the evaporation rate becomes almost constant in the limit of low Biot numbers. The results of the simulation have been successfully compared to experiments on a polystyrene–toluene mixture. The model allows to take into account deformations of the liquid–vapor interface and, therefore, to simulate film roughness or dewetting.
000903149 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000903149 536__ $$0G:(GEPRIS)449539983$$aDFG project 449539983 - Prozess-Struktur Relationen für die lösungsmittelbasierte organische Photovoltaik $$c449539983$$x1
000903149 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903149 7001_ $$0P:(DE-HGF)0$$aJang, DongJu$$b1
000903149 7001_ $$0P:(DE-Juel1)190193$$aEgelhaaf, Hans-Joachim$$b2
000903149 7001_ $$0P:(DE-Juel1)176427$$aBrabec, Christoph J.$$b3
000903149 7001_ $$0P:(DE-Juel1)167472$$aHarting, Jens$$b4$$eCorresponding author
000903149 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.1c12079$$gVol. 13, no. 47, p. 55988 - 56003$$n47$$p55988 - 56003$$tACS applied materials & interfaces$$v13$$x1944-8244$$y2021
000903149 8564_ $$uhttps://juser.fz-juelich.de/record/903149/files/EvaporationPF_Paper2_ORetal6_ACSAMI_Wholefinal_arXiv.pdf$$yOpenAccess
000903149 8564_ $$uhttps://juser.fz-juelich.de/record/903149/files/acsami.1c12079.pdf$$yRestricted
000903149 909CO $$ooai:juser.fz-juelich.de:903149$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173965$$aForschungszentrum Jülich$$b0$$kFZJ
000903149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190193$$aForschungszentrum Jülich$$b2$$kFZJ
000903149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176427$$aForschungszentrum Jülich$$b3$$kFZJ
000903149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167472$$aForschungszentrum Jülich$$b4$$kFZJ
000903149 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000903149 9141_ $$y2021
000903149 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000903149 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000903149 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000903149 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000903149 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2019$$d2021-01-30
000903149 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000903149 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000903149 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903149 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2019$$d2021-01-30
000903149 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000903149 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000903149 920__ $$lyes
000903149 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000903149 9801_ $$aFullTexts
000903149 980__ $$ajournal
000903149 980__ $$aVDB
000903149 980__ $$aUNRESTRICTED
000903149 980__ $$aI:(DE-Juel1)IEK-11-20140314
000903149 981__ $$aI:(DE-Juel1)IET-2-20140314