001     903154
005     20240712113038.0
024 7 _ |a 10.1088/1367-2630/ac1141
|2 doi
024 7 _ |a 2128/29294
|2 Handle
024 7 _ |a altmetric:110687331
|2 altmetric
024 7 _ |a WOS:000679535500001
|2 WOS
037 _ _ |a FZJ-2021-04878
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Ziegler, Sebastian
|0 P:(DE-Juel1)186664
|b 0
|u fzj
245 _ _ |a Theoretical framework for two-microswimmer hydrodynamic interactions
260 _ _ |a [London]
|c 2021
|b IOP
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638455031_23201
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hydrodynamic interactions are crucial for determining the cooperative behavior ofmicroswimmers at low Reynolds numbers. Here we provide a comprehensive analysis of thescaling laws and the strength of the interactions in the case of a pair of three-sphere swimmers.Both stroke-based and force-based elastic microswimmers are analyzed using an analyticperturbative approach, focusing on passive and active interactions. The former are governed by thecycle-averaged flow field of a single swimmer, which is dipolar at long range. However, atintermediate distances, with a cross-over at the order of 102 swimmer lengths, the quadrupolarfield dominates which, notably, yields an increase of the swimming velocity compared toindividual swimmers, even when the swimmers are one behind another. Furthermore, we find thatactive rotations resulting from the interplay of the time-resolved swimming stroke and the ambientflow fields and, even more prominently, active translations are model-dependent. A mappingbetween the stroke-based and force-based swimmers is only possible for the low driving frequencyregime where the characteristic time scale is smaller than the viscous one. Finally, we find that thelong-term behavior of the swimmers, while sensitive to the initial relative positioning, does notdepend on the pusher or puller nature of the swimmer. These results clearly indicate that thebehavior of swarms will depend on the swimmer model, which was hitherto not well appreciated.
536 _ _ |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)
|0 G:(DE-HGF)POF4-1215
|c POF4-121
|x 0
|f POF IV
536 _ _ |a DFG project 366087427 - Magnetokapillare Mikroroboter zum Einfangen und zum Transport von Objekten an Flüssiggrenzflächen
|0 G:(GEPRIS)366087427
|c 366087427
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Scheel, Thomas
|0 P:(DE-Juel1)179426
|b 1
700 1 _ |a Hubert, Maxime
|0 P:(DE-Juel1)186666
|b 2
|u fzj
700 1 _ |a Harting, Jens
|0 P:(DE-Juel1)167472
|b 3
700 1 _ |a Smith, Ana-Sunčana
|0 P:(DE-Juel1)186752
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1088/1367-2630/ac1141
|g Vol. 23, no. 7, p. 073041 -
|0 PERI:(DE-600)1464444-7
|n 7
|p 073041 -
|t New journal of physics
|v 23
|y 2021
|x 1367-2630
856 4 _ |u https://juser.fz-juelich.de/record/903154/files/Theoretical%20framework%20for%20two-microswimmer%20hydrodynamic%20interactions.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903154
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186664
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179426
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)186666
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)167472
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)186752
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1215
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEW J PHYS : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21