000903156 001__ 903156
000903156 005__ 20240712113038.0
000903156 0247_ $$2doi$$a10.1039/D1CP03229A
000903156 0247_ $$2ISSN$$a1463-9076
000903156 0247_ $$2ISSN$$a1463-9084
000903156 0247_ $$2Handle$$a2128/29296
000903156 0247_ $$2altmetric$$aaltmetric:109602738
000903156 0247_ $$2pmid$$a34714899
000903156 0247_ $$2WOS$$aWOS:000712542700001
000903156 037__ $$aFZJ-2021-04880
000903156 041__ $$aEnglish
000903156 082__ $$a540
000903156 1001_ $$0P:(DE-Juel1)176737$$aKönig, Björn$$b0
000903156 245__ $$aTwo-dimensional Cahn–Hilliard simulations for coarsening kinetics of spinodal decomposition in binary mixtures
000903156 260__ $$aCambridge$$bRSC Publ.$$c2021
000903156 3367_ $$2DRIVER$$aarticle
000903156 3367_ $$2DataCite$$aOutput Types/Journal article
000903156 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638457071_18868
000903156 3367_ $$2BibTeX$$aARTICLE
000903156 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903156 3367_ $$00$$2EndNote$$aJournal Article
000903156 520__ $$aThe evolution of the microstructure due to spinodal decomposition in phase separated mixtures has astrong impact on the final material properties. In the late stage of coarsening, the system ischaracterized by the growth of a single characteristic length scale LBCta. To understand thestructure–property relationship, the knowledge of the coarsening exponent aand the coarsening rateconstant Cis mandatory. Since the existing literature is not entirely consistent, we perform phase fieldsimulations based on the Cahn–Hilliard equation. We restrict ourselves to binary mixtures using asymmetric Flory–Huggins free energy and a constant composition-independent mobility term and showthat the coarsening for off-critical mixtures is slower than the expected t1/3-growth. Instead, we find atobe dependent on the mixture composition and associate this with the observed morphologies. Finally,we propose a model to describe the complete coarsening kinetics including the rate constant C.
000903156 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000903156 536__ $$0G:(GEPRIS)449539983$$aDFG project 449539983 - Prozess-Struktur Relationen für die lösungsmittelbasierte organische Photovoltaik $$c449539983$$x1
000903156 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903156 7001_ $$0P:(DE-Juel1)173965$$aRonsin, Olivier J. J.$$b1
000903156 7001_ $$0P:(DE-Juel1)167472$$aHarting, Jens$$b2$$eCorresponding author
000903156 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D1CP03229A$$gVol. 23, no. 43, p. 24823 - 24833$$n43$$p24823 - 24833$$tPhysical chemistry, chemical physics$$v23$$x1463-9076$$y2021
000903156 8564_ $$uhttps://juser.fz-juelich.de/record/903156/files/d1cp03229a.pdf$$yOpenAccess
000903156 8767_ $$d2021-12-30$$eHybrid-OA$$jPublish and Read
000903156 909CO $$ooai:juser.fz-juelich.de:903156$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000903156 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176737$$aForschungszentrum Jülich$$b0$$kFZJ
000903156 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173965$$aForschungszentrum Jülich$$b1$$kFZJ
000903156 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167472$$aForschungszentrum Jülich$$b2$$kFZJ
000903156 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000903156 9141_ $$y2021
000903156 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000903156 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000903156 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000903156 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903156 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000903156 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000903156 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000903156 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000903156 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-01-28$$wger
000903156 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2019$$d2021-01-28
000903156 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-28$$wger
000903156 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000903156 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000903156 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000903156 920__ $$lyes
000903156 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000903156 9801_ $$aFullTexts
000903156 980__ $$ajournal
000903156 980__ $$aVDB
000903156 980__ $$aUNRESTRICTED
000903156 980__ $$aI:(DE-Juel1)IEK-11-20140314
000903156 980__ $$aAPC
000903156 981__ $$aI:(DE-Juel1)IET-2-20140314