000903167 001__ 903167
000903167 005__ 20240507205537.0
000903167 0247_ $$2doi$$a10.1038/s43246-021-00213-3
000903167 0247_ $$2Handle$$a2128/29394
000903167 0247_ $$2WOS$$aWOS:000724782200001
000903167 037__ $$aFZJ-2021-04887
000903167 041__ $$aEnglish
000903167 082__ $$a600
000903167 1001_ $$0P:(DE-Juel1)172619$$aKölzer, Jonas$$b0$$eCorresponding author
000903167 245__ $$aIn-plane magnetic field-driven symmetry breaking in topological insulator-based three-terminal junctions
000903167 260__ $$aLondon$$bSpringer Nature$$c2021
000903167 3367_ $$2DRIVER$$aarticle
000903167 3367_ $$2DataCite$$aOutput Types/Journal article
000903167 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715062779_9471
000903167 3367_ $$2BibTeX$$aARTICLE
000903167 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903167 3367_ $$00$$2EndNote$$aJournal Article
000903167 520__ $$aTopological surface states of three-dimensional topological insulator nanoribbons and their distinct magnetoconductance properties are promising for topoelectronic applications and topological quantum computation. A crucial building block for nanoribbon-based circuits are three-terminal junctions. While the transport of topological surface states on a planar boundary is not directly affected by an in-plane magnetic field, the orbital effect cannot be neglected when the surface states are confined to the boundary of a nanoribbon geometry.Here, we report on the magnetotransport properties of such three-terminal junctions. We observe a dependence of the current on the in-plane magnetic field, with a distinct steeringpattern of the surface state current towards a preferred output terminal for different magnetic field orientations. We demonstrate that this steering effect originates from the orbital effect, trapping the phase-coherent surface states in the different legs of the junction on opposite sides of the nanoribbon and breaking the left-right symmetry of the transmission across the junction. The reported magnetotransport properties demonstrate that an in-plane magnetic field is not only relevant but also very useful for the characterization and manipulation oftransport in three-dimensional topological insulator nanoribbon-based junctions and circuits, acting as a topoelectric current switch.
000903167 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000903167 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903167 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000903167 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000903167 7001_ $$0P:(DE-Juel1)180184$$aMoors, Kristof$$b1
000903167 7001_ $$0P:(DE-Juel1)171826$$aJalil, Abdur Rehman$$b2
000903167 7001_ $$0P:(DE-Juel1)176848$$aZimmermann, Erik$$b3
000903167 7001_ $$0P:(DE-Juel1)167347$$aRosenbach, Daniel$$b4
000903167 7001_ $$0P:(DE-Juel1)169107$$aKibkalo, Lidia$$b5
000903167 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b6
000903167 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b7
000903167 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b8
000903167 7001_ $$0P:(DE-Juel1)161279$$aSchmidt, Thomas L.$$b9
000903167 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b10
000903167 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b11$$eCorresponding author
000903167 773__ $$0PERI:(DE-600)3008524-X$$a10.1038/s43246-021-00213-3$$gVol. 2, no. 1, p. 116$$n1$$p116$$tCommunications materials$$v2$$x2662-4443$$y2021
000903167 8564_ $$uhttps://juser.fz-juelich.de/record/903167/files/Koelzer-In-plane%20magnetic%20field-driven%20symmetry%20breaking--arXiv-2012.15118%20.pdf$$yOpenAccess
000903167 8564_ $$uhttps://juser.fz-juelich.de/record/903167/files/s43246-021-00213-3.pdf$$yOpenAccess
000903167 8767_ $$8SN-2021-00834-b$$92022-02-17$$d2022-02-21$$eAPC$$jDEAL$$lDEAL: Springer$$z1200177578
000903167 909CO $$ooai:juser.fz-juelich.de:903167$$popenaire$$pdriver$$pOpenAPC$$popen_access$$pdnbdelivery$$popenCost$$pVDB
000903167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172619$$aForschungszentrum Jülich$$b0$$kFZJ
000903167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180184$$aForschungszentrum Jülich$$b1$$kFZJ
000903167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171826$$aForschungszentrum Jülich$$b2$$kFZJ
000903167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176848$$aForschungszentrum Jülich$$b3$$kFZJ
000903167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169107$$aForschungszentrum Jülich$$b5$$kFZJ
000903167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b6$$kFZJ
000903167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b7$$kFZJ
000903167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b8$$kFZJ
000903167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich$$b10$$kFZJ
000903167 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b11$$kFZJ
000903167 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000903167 9141_ $$y2021
000903167 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903167 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-29
000903167 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903167 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN MATER : 2022$$d2023-10-27
000903167 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000903167 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000903167 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:13:37Z
000903167 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:13:37Z
000903167 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:13:37Z
000903167 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2023-05-02T09:13:37Z
000903167 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000903167 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
000903167 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000903167 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN MATER : 2022$$d2023-10-27
000903167 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
000903167 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
000903167 920__ $$lyes
000903167 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000903167 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000903167 980__ $$ajournal
000903167 980__ $$aVDB
000903167 980__ $$aI:(DE-Juel1)PGI-9-20110106
000903167 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000903167 980__ $$aAPC
000903167 980__ $$aUNRESTRICTED
000903167 9801_ $$aAPC
000903167 9801_ $$aFullTexts