000903171 001__ 903171
000903171 005__ 20240709081946.0
000903171 0247_ $$2doi$$a10.1016/j.checat.2021.08.002
000903171 0247_ $$2Handle$$a2128/30714
000903171 0247_ $$2altmetric$$aaltmetric:113038109
000903171 0247_ $$2WOS$$aWOS:000901295900011
000903171 037__ $$aFZJ-2021-04891
000903171 041__ $$aEnglish
000903171 1001_ $$0P:(DE-Juel1)185799$$aWolf, Moritz$$b0
000903171 245__ $$aFormation of metal-support compounds in cobalt-based Fischer-Tropsch synthesis: A review
000903171 260__ $$aErscheinungsort nicht ermittelbar$$bElsevier$$c2021
000903171 3367_ $$2DRIVER$$aarticle
000903171 3367_ $$2DataCite$$aOutput Types/Journal article
000903171 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715062741_9471
000903171 3367_ $$2BibTeX$$aARTICLE
000903171 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903171 3367_ $$00$$2EndNote$$aJournal Article
000903171 520__ $$aThe Fischer-Tropsch synthesis as a large-scale industrial process converts a mixture of carbon monoxide and hydrogen in a surface polymerization reaction to mostly hydrocarbons and water. In fact, water is the most abundant product on a per mole basis. The major deactivation mechanisms for cobalt-based catalysts in the Fischer-Tropsch synthesis regarding the active metallic phase are various forms of carbon deposition, sintering, and oxidation to Fischer-Tropsch inactive oxidic phases. In particular high concentrations of the product water may cause oxidation and sintering of the active metallic cobalt phase, but are inherent to high conversion levels in the Fischer-Tropsch synthesis. Not only can cobalt be oxidized to CoO, it may also form mixed metal oxides such as cobalt aluminates in the presence of a metal oxide support. However, literature only provides limited information on the formation and morphology of such metal-support compounds due to the challenging (direct) characterization of these phases in the spent catalysts. Herein, thermodynamic predictions summarize and discuss the feasibility of water-induced deactivation of cobalt-based Fischer-Tropsch catalysts by oxidation. Further, identified mechanisms for hydrothermal sintering and recent findings on water-induced oxidation of metallic cobalt to CoO are discussed. However, the main emphasis of the review concerns the formation of metal-support compounds and the applicability of various in situ and ex situ characterization techniques on their identification. In particular X-ray absorption spectroscopy has recently provided significant insights into the formation of metal-support compounds in (simulated) high conversion Fischer-Tropsch environment, while high resolution microscopy was successfully applied to elucidate corresponding catalyst morphologies.
000903171 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000903171 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903171 7001_ $$00000-0002-8817-3621$$aFischer, Nico$$b1
000903171 7001_ $$00000-0002-5797-5023$$aClaeys, Michael$$b2$$eCorresponding author
000903171 773__ $$0PERI:(DE-600)3110091-0$$a10.1016/j.checat.2021.08.002$$gVol. 1, no. 5, p. 1014 - 1041$$n5$$p1014 - 1041$$tChem Catalysis$$v1$$x2667-1093$$y2021
000903171 8564_ $$uhttps://juser.fz-juelich.de/record/903171/files/Formation%20of%20metal-support%20compounds%20in%20cobalt-based%20Fischer-Tropsch%20synthesis_%20A%20review.pdf$$yPublished on 2021-09-07. Available in OpenAccess from 2022-09-07.$$zStatID:(DE-HGF)0510
000903171 909CO $$ooai:juser.fz-juelich.de:903171$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903171 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185799$$aForschungszentrum Jülich$$b0$$kFZJ
000903171 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000903171 9141_ $$y2022
000903171 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000903171 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000903171 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000903171 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000903171 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM CATALYSIS : 2022$$d2023-10-27
000903171 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000903171 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
000903171 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000903171 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM CATALYSIS : 2022$$d2023-10-27
000903171 920__ $$lyes
000903171 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000903171 9801_ $$aFullTexts
000903171 980__ $$ajournal
000903171 980__ $$aVDB
000903171 980__ $$aI:(DE-Juel1)IEK-11-20140314
000903171 980__ $$aUNRESTRICTED
000903171 981__ $$aI:(DE-Juel1)IET-2-20140314