001     903171
005     20240709081946.0
024 7 _ |a 10.1016/j.checat.2021.08.002
|2 doi
024 7 _ |a 2128/30714
|2 Handle
024 7 _ |a altmetric:113038109
|2 altmetric
024 7 _ |a WOS:000901295900011
|2 WOS
037 _ _ |a FZJ-2021-04891
041 _ _ |a English
100 1 _ |a Wolf, Moritz
|0 P:(DE-Juel1)185799
|b 0
245 _ _ |a Formation of metal-support compounds in cobalt-based Fischer-Tropsch synthesis: A review
260 _ _ |a Erscheinungsort nicht ermittelbar
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1715062741_9471
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Fischer-Tropsch synthesis as a large-scale industrial process converts a mixture of carbon monoxide and hydrogen in a surface polymerization reaction to mostly hydrocarbons and water. In fact, water is the most abundant product on a per mole basis. The major deactivation mechanisms for cobalt-based catalysts in the Fischer-Tropsch synthesis regarding the active metallic phase are various forms of carbon deposition, sintering, and oxidation to Fischer-Tropsch inactive oxidic phases. In particular high concentrations of the product water may cause oxidation and sintering of the active metallic cobalt phase, but are inherent to high conversion levels in the Fischer-Tropsch synthesis. Not only can cobalt be oxidized to CoO, it may also form mixed metal oxides such as cobalt aluminates in the presence of a metal oxide support. However, literature only provides limited information on the formation and morphology of such metal-support compounds due to the challenging (direct) characterization of these phases in the spent catalysts. Herein, thermodynamic predictions summarize and discuss the feasibility of water-induced deactivation of cobalt-based Fischer-Tropsch catalysts by oxidation. Further, identified mechanisms for hydrothermal sintering and recent findings on water-induced oxidation of metallic cobalt to CoO are discussed. However, the main emphasis of the review concerns the formation of metal-support compounds and the applicability of various in situ and ex situ characterization techniques on their identification. In particular X-ray absorption spectroscopy has recently provided significant insights into the formation of metal-support compounds in (simulated) high conversion Fischer-Tropsch environment, while high resolution microscopy was successfully applied to elucidate corresponding catalyst morphologies.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fischer, Nico
|0 0000-0002-8817-3621
|b 1
700 1 _ |a Claeys, Michael
|0 0000-0002-5797-5023
|b 2
|e Corresponding author
773 _ _ |a 10.1016/j.checat.2021.08.002
|g Vol. 1, no. 5, p. 1014 - 1041
|0 PERI:(DE-600)3110091-0
|n 5
|p 1014 - 1041
|t Chem Catalysis
|v 1
|y 2021
|x 2667-1093
856 4 _ |u https://juser.fz-juelich.de/record/903171/files/Formation%20of%20metal-support%20compounds%20in%20cobalt-based%20Fischer-Tropsch%20synthesis_%20A%20review.pdf
|y Published on 2021-09-07. Available in OpenAccess from 2022-09-07.
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:903171
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185799
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2022
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM CATALYSIS : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM CATALYSIS : 2022
|d 2023-10-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21