000903180 001__ 903180 000903180 005__ 20230815122840.0 000903180 0247_ $$2doi$$a10.1029/2021WR030313 000903180 0247_ $$2ISSN$$a0043-1397 000903180 0247_ $$2ISSN$$a1944-7973 000903180 0247_ $$2Handle$$a2128/29313 000903180 0247_ $$2WOS$$aWOS:000703704400032 000903180 037__ $$aFZJ-2021-04900 000903180 082__ $$a550 000903180 1001_ $$0P:(DE-Juel1)185940$$aXiao, Sinan$$b0 000903180 245__ $$aBayesian Inversion of Multi‐Gaussian Log‐Conductivity Fields With Uncertain Hyperparameters: An Extension of Preconditioned Crank‐Nicolson Markov Chain Monte Carlo With Parallel Tempering 000903180 260__ $$a[New York]$$bWiley$$c2021 000903180 3367_ $$2DRIVER$$aarticle 000903180 3367_ $$2DataCite$$aOutput Types/Journal article 000903180 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638526462_18382 000903180 3367_ $$2BibTeX$$aARTICLE 000903180 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000903180 3367_ $$00$$2EndNote$$aJournal Article 000903180 520__ $$aIn conventional Bayesian geostatistical inversion, specific values of hyperparameters characterizing the prior distribution of random fields are required. However, these hyperparameters are typically very uncertain in practice. Thus, it is more appropriate to consider the uncertainty of hyperparameters as well. The preconditioned Crank-Nicolson Markov chain Monte Carlo with parallel tempering (pCN-PT) has been used to efficiently solve the conventional Bayesian inversion of high-dimensional multi-Gaussian random fields. In this study, we extend pCN-PT to Bayesian inversion with uncertain hyperparameters of multi-Gaussian fields. To utilize the dimension robustness of the preconditioned Crank-Nicolson algorithm, we reconstruct the problem by decomposing the random field into hyperparameters and white noise. Then, we apply pCN-PT with a Gibbs split to this “new” problem to obtain the posterior samples of hyperparameters and white noise, and further recover the posterior samples of spatially distributed model parameters. Finally, we apply the extended pCN-PT method for estimating a finely resolved multi-Gaussian log-hydraulic conductivity field from direct data and from head data to show its effectiveness. Results indicate that the estimation of hyperparameters with hydraulic head data is very challenging and the posterior distributions of hyperparameters are only slightly narrower than the prior distributions. Direct measurements of hydraulic conductivity are needed to narrow more the posterior distribution of hyperparameters. To the best of our knowledge, this is a first accurate and fully linearization free solution to Bayesian multi-Gaussian geostatistical inversion with uncertain hyperparameters. 000903180 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0 000903180 536__ $$0G:(GEPRIS)359880532$$aDFG project 359880532 - Computergestützter Ansatz zur Kalibrierung und Validierung mathematischer Modelle für Strömungen im Untergrund - COMPU-FLOW $$c359880532$$x1 000903180 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000903180 7001_ $$0P:(DE-HGF)0$$aXu, Teng$$b1$$eCorresponding author 000903180 7001_ $$00000-0001-7331-8237$$aReuschen, Sebastian$$b2 000903180 7001_ $$00000-0003-2583-8865$$aNowak, Wolfgang$$b3 000903180 7001_ $$0P:(DE-Juel1)138662$$aHendricks Franssen, Harrie-Jan$$b4 000903180 773__ $$0PERI:(DE-600)2029553-4$$a10.1029/2021WR030313$$gVol. 57, no. 9$$n9$$pe2021WR030313$$tWater resources research$$v57$$x0043-1397$$y2021 000903180 8564_ $$uhttps://juser.fz-juelich.de/record/903180/files/2021WR030313.pdf$$yOpenAccess 000903180 909CO $$ooai:juser.fz-juelich.de:903180$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000903180 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b4$$kFZJ 000903180 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0 000903180 9141_ $$y2021 000903180 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-26 000903180 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-26 000903180 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-26 000903180 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWATER RESOUR RES : 2019$$d2021-01-26 000903180 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0 000903180 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-26$$wger 000903180 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26 000903180 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-26 000903180 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-26 000903180 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000903180 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-26 000903180 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26 000903180 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-26 000903180 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0 000903180 980__ $$ajournal 000903180 980__ $$aVDB 000903180 980__ $$aUNRESTRICTED 000903180 980__ $$aI:(DE-Juel1)IBG-3-20101118 000903180 9801_ $$aFullTexts