001     903180
005     20230815122840.0
024 7 _ |a 10.1029/2021WR030313
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 2128/29313
|2 Handle
024 7 _ |a WOS:000703704400032
|2 WOS
037 _ _ |a FZJ-2021-04900
082 _ _ |a 550
100 1 _ |a Xiao, Sinan
|0 P:(DE-Juel1)185940
|b 0
245 _ _ |a Bayesian Inversion of Multi‐Gaussian Log‐Conductivity Fields With Uncertain Hyperparameters: An Extension of Preconditioned Crank‐Nicolson Markov Chain Monte Carlo With Parallel Tempering
260 _ _ |a [New York]
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638526462_18382
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In conventional Bayesian geostatistical inversion, specific values of hyperparameters characterizing the prior distribution of random fields are required. However, these hyperparameters are typically very uncertain in practice. Thus, it is more appropriate to consider the uncertainty of hyperparameters as well. The preconditioned Crank-Nicolson Markov chain Monte Carlo with parallel tempering (pCN-PT) has been used to efficiently solve the conventional Bayesian inversion of high-dimensional multi-Gaussian random fields. In this study, we extend pCN-PT to Bayesian inversion with uncertain hyperparameters of multi-Gaussian fields. To utilize the dimension robustness of the preconditioned Crank-Nicolson algorithm, we reconstruct the problem by decomposing the random field into hyperparameters and white noise. Then, we apply pCN-PT with a Gibbs split to this “new” problem to obtain the posterior samples of hyperparameters and white noise, and further recover the posterior samples of spatially distributed model parameters. Finally, we apply the extended pCN-PT method for estimating a finely resolved multi-Gaussian log-hydraulic conductivity field from direct data and from head data to show its effectiveness. Results indicate that the estimation of hyperparameters with hydraulic head data is very challenging and the posterior distributions of hyperparameters are only slightly narrower than the prior distributions. Direct measurements of hydraulic conductivity are needed to narrow more the posterior distribution of hyperparameters. To the best of our knowledge, this is a first accurate and fully linearization free solution to Bayesian multi-Gaussian geostatistical inversion with uncertain hyperparameters.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|x 0
|f POF IV
536 _ _ |a DFG project 359880532 - Computergestützter Ansatz zur Kalibrierung und Validierung mathematischer Modelle für Strömungen im Untergrund - COMPU-FLOW
|0 G:(GEPRIS)359880532
|c 359880532
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Xu, Teng
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Reuschen, Sebastian
|0 0000-0001-7331-8237
|b 2
700 1 _ |a Nowak, Wolfgang
|0 0000-0003-2583-8865
|b 3
700 1 _ |a Hendricks Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 4
773 _ _ |a 10.1029/2021WR030313
|g Vol. 57, no. 9
|0 PERI:(DE-600)2029553-4
|n 9
|p e2021WR030313
|t Water resources research
|v 57
|y 2021
|x 0043-1397
856 4 _ |u https://juser.fz-juelich.de/record/903180/files/2021WR030313.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903180
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)138662
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2019
|d 2021-01-26
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-26
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-26
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21