000903181 001__ 903181
000903181 005__ 20240712112930.0
000903181 0247_ $$2doi$$a10.1016/j.ijhydene.2021.02.021
000903181 0247_ $$2ISSN$$a0360-3199
000903181 0247_ $$2ISSN$$a1879-3487
000903181 0247_ $$2Handle$$a2128/29314
000903181 0247_ $$2WOS$$aWOS:000641020600012
000903181 037__ $$aFZJ-2021-04901
000903181 041__ $$aEnglish
000903181 082__ $$a620
000903181 1001_ $$0P:(DE-Juel1)188715$$aMrusek, Stephan$$b0
000903181 245__ $$aPressurized hydrogen from charged liquid organic hydrogen carrier systems by electrochemical hydrogen compression
000903181 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000903181 3367_ $$2DRIVER$$aarticle
000903181 3367_ $$2DataCite$$aOutput Types/Journal article
000903181 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638529176_18382
000903181 3367_ $$2BibTeX$$aARTICLE
000903181 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903181 3367_ $$00$$2EndNote$$aJournal Article
000903181 520__ $$aWe demonstrate that the combination of hydrogen release from a Liquid Organic HydrogenCarrier (LOHC) system with electrochemical hydrogen compression (EHC) provides threedecisive advantages over the state-of-the-art hydrogen provision from such storage system:a) The EHC device produces reduced hydrogen pressure on its suction side connectedto the LOHC dehydrogenation unit, thus shifting the thermodynamic equilibrium towardsdehydrogenation and accelerating the hydrogen release; b) the EHC device compresses thehydrogen released from the carrier system thus producing high value compressedhydrogen; c) the EHC process is selective for proton transport and thus the process purifieshydrogen from impurities, such as traces of methane. We demonstrate this combinationfor the production of compressed hydrogen (absolute pressure of 6 bar) from perhydrodibenzyltoluene at dehydrogenation temperatures down to 240 C in a quality suitable forfuel cell operation, e.g. in a fuel cell vehicle. The presented technology may be highlyattractive for providing compressed hydrogen at future hydrogen filling stations thatreceive and store hydrogen in a LOHC-bound manner.
000903181 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000903181 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903181 7001_ $$0P:(DE-Juel1)174308$$aPreuster, Patrick$$b1
000903181 7001_ $$0P:(DE-Juel1)177792$$aMüller, Karsten$$b2
000903181 7001_ $$0P:(DE-HGF)0$$aBösmann, Andreas$$b3
000903181 7001_ $$0P:(DE-Juel1)162305$$aWasserscheid, Peter$$b4$$eCorresponding author
000903181 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2021.02.021$$gVol. 46, no. 29, p. 15624 - 15634$$n29$$p15624 - 15634$$tInternational journal of hydrogen energy$$v46$$x0360-3199$$y2021
000903181 8564_ $$uhttps://juser.fz-juelich.de/record/903181/files/Pressurized%20hydrogen%20from%20charged%20liquid%20organic%20hydrogen%20carrier%20systems%20by%20electrochemical%20hydrogen%20compression.pdf$$yOpenAccess
000903181 909CO $$ooai:juser.fz-juelich.de:903181$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903181 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188715$$aForschungszentrum Jülich$$b0$$kFZJ
000903181 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174308$$aForschungszentrum Jülich$$b1$$kFZJ
000903181 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162305$$aForschungszentrum Jülich$$b4$$kFZJ
000903181 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000903181 9141_ $$y2021
000903181 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000903181 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000903181 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000903181 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903181 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000903181 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2019$$d2021-01-28
000903181 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000903181 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000903181 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000903181 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903181 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000903181 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000903181 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000903181 920__ $$lyes
000903181 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000903181 9801_ $$aFullTexts
000903181 980__ $$ajournal
000903181 980__ $$aVDB
000903181 980__ $$aUNRESTRICTED
000903181 980__ $$aI:(DE-Juel1)IEK-11-20140314
000903181 981__ $$aI:(DE-Juel1)IET-2-20140314