000903186 001__ 903186
000903186 005__ 20230123110541.0
000903186 0247_ $$2doi$$a10.1093/brain/awab375
000903186 0247_ $$2ISSN$$a0006-8950
000903186 0247_ $$2ISSN$$a1460-2156
000903186 0247_ $$2Handle$$a2128/31273
000903186 0247_ $$2altmetric$$aaltmetric:114496357
000903186 0247_ $$2pmid$$apmid:34605898
000903186 0247_ $$2WOS$$aWOS:000788204200001
000903186 037__ $$aFZJ-2021-04906
000903186 082__ $$a610
000903186 1001_ $$0P:(DE-HGF)0$$aKhan, Ahmed Faraz$$b0
000903186 245__ $$aPersonalized brain models identify neurotransmitter receptor changes in Alzheimer’s disease
000903186 260__ $$aOxford$$bOxford Univ. Press$$c2022
000903186 3367_ $$2DRIVER$$aarticle
000903186 3367_ $$2DataCite$$aOutput Types/Journal article
000903186 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1654781511_30671
000903186 3367_ $$2BibTeX$$aARTICLE
000903186 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903186 3367_ $$00$$2EndNote$$aJournal Article
000903186 520__ $$aAlzheimer’s disease involves many neurobiological alterations from molecular to macroscopic spatial scales, but we currently lack integrative, mechanistic brain models characterizing how factors across different biological scales interact to cause clinical deterioration in a way that is subject-specific or personalized. As important signalling molecules and mediators of many neurobiological interactions, neurotransmitter receptors are promising candidates for identifying molecular mechanisms and drug targets in Alzheimer's disease.We present a neurotransmitter receptor-enriched multifactorial brain model, which integrates spatial distribution patterns of 15 neurotransmitter receptors from post-mortem autoradiography with multiple in vivo neuroimaging modalities (tau, amyloid-β and glucose PET, and structural, functional and arterial spin labelling MRI) in a personalized, generative, whole-brain formulation.In a heterogeneous aged population (n = 423, ADNI data), models with personalized receptor-neuroimaging interactions showed a significant improvement over neuroimaging-only models, explaining about 70% (±20%) of the variance in longitudinal changes to the six neuroimaging modalities. In Alzheimer's disease patients (n = 25, ADNI data), receptor-imaging interactions explained up to 39.7% (P < 0.003, family-wise error-rate-corrected) of inter-individual variability in cognitive deterioration, via an axis primarily affecting executive function. Notably, based on their contribution to the clinical severity in Alzheimer’s disease, we found significant functional alterations to glutamatergic interactions affecting tau accumulation and neural activity dysfunction and GABAergic interactions concurrently affecting neural activity dysfunction, amyloid and tau distributions, as well as significant cholinergic receptor effects on tau accumulation. Overall, GABAergic alterations had the largest effect on cognitive impairment (particularly executive function) in our Alzheimer’s disease cohort (n = 25). Furthermore, we demonstrate the clinical applicability of this approach by characterizing subjects based on individualized ‘fingerprints’ of receptor alterations.This study introduces the first robust, data-driven framework for integrating several neurotransmitter receptors, multimodal neuroimaging and clinical data in a flexible and interpretable brain model. It enables further understanding of the mechanistic neuropathological basis of neurodegenerative progression and heterogeneity, and constitutes a promising step towards implementing personalized, neurotransmitter-based treatments.
000903186 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000903186 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000903186 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000903186 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903186 7001_ $$0P:(DE-HGF)0$$aAdewale, Quadri$$b1
000903186 7001_ $$0P:(DE-HGF)0$$aBaumeister, Tobias R$$b2
000903186 7001_ $$0P:(DE-HGF)0$$aCarbonell, Felix$$b3
000903186 7001_ $$0P:(DE-Juel1)131714$$aZilles, Karl$$b4
000903186 7001_ $$0P:(DE-Juel1)131701$$aPalomero-Gallagher, Nicola$$b5$$ufzj
000903186 7001_ $$0P:(DE-HGF)0$$aIturria-Medina, Yasser$$b6$$eCorresponding author
000903186 773__ $$0PERI:(DE-600)1474117-9$$a10.1093/brain/awab375$$gp. awab375$$n5$$p1785–1804$$tBrain$$v145$$x0006-8950$$y2022
000903186 8564_ $$uhttps://juser.fz-juelich.de/record/903186/files/awab375.pdf
000903186 8564_ $$uhttps://juser.fz-juelich.de/record/903186/files/Khan%202021%20Personalized%20brain%20models%20identify%20neurotransmitter%20receptor%20changes%20in%20Alzheimer%27s%20disease%20--%20PREPRINT.pdf$$yPublished on 2021-10-04. Available in OpenAccess from 2022-10-04.
000903186 8564_ $$uhttps://juser.fz-juelich.de/record/903186/files/Khan_etal_2021_in%20press.pdf$$yPublished on 2021-10-04. Available in OpenAccess from 2022-10-04.
000903186 909CO $$ooai:juser.fz-juelich.de:903186$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000903186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131701$$aForschungszentrum Jülich$$b5$$kFZJ
000903186 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000903186 9141_ $$y2022
000903186 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000903186 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000903186 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000903186 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000903186 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-09$$wger
000903186 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000903186 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000903186 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000903186 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000903186 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000903186 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-09
000903186 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-09
000903186 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN : 2021$$d2022-11-09
000903186 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09
000903186 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09
000903186 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bBRAIN : 2021$$d2022-11-09
000903186 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000903186 980__ $$ajournal
000903186 980__ $$aVDB
000903186 980__ $$aUNRESTRICTED
000903186 980__ $$aI:(DE-Juel1)INM-1-20090406
000903186 9801_ $$aFullTexts