000903190 001__ 903190
000903190 005__ 20230303201754.0
000903190 0247_ $$2doi$$a10.1002/admi.202101257
000903190 0247_ $$2WOS$$aWOS:000725433700001
000903190 0247_ $$2Handle$$a2128/31308
000903190 037__ $$aFZJ-2021-04910
000903190 082__ $$a600
000903190 1001_ $$0P:(DE-HGF)0$$aZurhelle, Alexander F.$$b0
000903190 245__ $$aOxygen Diffusion in Platinum Electrodes: A Molecular Dynamics Study of the Role of Extended Defects
000903190 260__ $$aWeinheim$$bWiley-VCH$$c2022
000903190 3367_ $$2DRIVER$$aarticle
000903190 3367_ $$2DataCite$$aOutput Types/Journal article
000903190 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642417925_30509
000903190 3367_ $$2BibTeX$$aARTICLE
000903190 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903190 3367_ $$00$$2EndNote$$aJournal Article
000903190 520__ $$aPlatinum serves as a model electrode in solid-state electrochemistry and as the inert electrode in redox-based resistive random-access memory (ReRAM) technology. Experimental work has proposed that oxygen may diffuse faster along platinum's extended defects, but quantitative, unambiguous transport data do not exist. In this study, the diffusion of oxygen atoms in crystalline platinum and along its extended defects is studied as a function of temperature by means of molecular dynamics (MD) simulations with the ReaxFF interatomic potentials. The MD simulations indicate that platinum vacancies trap oxygen atoms, inhibiting their diffusion through the platinum lattice and leading to a high activation enthalpy of diffusion of around 3 eV. This picture of trapping is supported by static density-functional-theory calculations. MD simulations of selected dislocations and selected grain boundaries indicate that oxygen diffusion is much faster along these extended defects than through the Pt lattice at temperatures below 1400 K, exhibiting a much lower activation enthalpy of ≈0.7 eV for all extended defects examined. Producing specific electrode microstructures with controlled densities and types of extended defects thus offers a new avenue to improve the performance of ReRAM devices and to prevent device failure.
000903190 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000903190 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903190 7001_ $$0P:(DE-HGF)0$$aStehling, Wilhelm$$b1
000903190 7001_ $$0P:(DE-HGF)0$$aDe Souza, Roger A.$$b2
000903190 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3
000903190 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b4$$eCorresponding author
000903190 773__ $$0PERI:(DE-600)2750376-8$$a10.1002/admi.202101257$$gp. 2101257 -$$n2$$p2101257$$tAdvanced materials interfaces$$v9$$x2196-7350$$y2022
000903190 8564_ $$uhttps://juser.fz-juelich.de/record/903190/files/Adv%20Materials%20Inter%20-%202021%20-%20Zurhelle%20-%20Oxygen%20Diffusion%20in%20Platinum%20Electrodes%20A%20Molecular%20Dynamics%20Study%20of%20the%20Role%20of.pdf$$yOpenAccess
000903190 8767_ $$d2022-10-18$$eHybrid-OA$$jDEAL
000903190 909CO $$ooai:juser.fz-juelich.de:903190$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$qOpenAPC
000903190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b3$$kFZJ
000903190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b4$$kFZJ
000903190 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000903190 9141_ $$y2022
000903190 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903190 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000903190 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000903190 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903190 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000903190 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER INTERFACES : 2021$$d2022-11-12
000903190 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000903190 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000903190 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000903190 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000903190 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000903190 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV MATER INTERFACES : 2021$$d2022-11-12
000903190 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000903190 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000903190 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000903190 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000903190 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000903190 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000903190 980__ $$ajournal
000903190 980__ $$aVDB
000903190 980__ $$aUNRESTRICTED
000903190 980__ $$aI:(DE-Juel1)PGI-7-20110106
000903190 980__ $$aI:(DE-82)080009_20140620
000903190 980__ $$aAPC
000903190 9801_ $$aAPC
000903190 9801_ $$aFullTexts