000903225 001__ 903225
000903225 005__ 20240610120717.0
000903225 0247_ $$2doi$$a10.1007/JHEP08(2021)157
000903225 0247_ $$2ISSN$$a1029-8479
000903225 0247_ $$2ISSN$$a1126-6708
000903225 0247_ $$2ISSN$$a1127-2236
000903225 0247_ $$2Handle$$a2128/29359
000903225 0247_ $$2WOS$$aWOS:000693090600001
000903225 037__ $$aFZJ-2021-04932
000903225 082__ $$a530
000903225 1001_ $$00000-0002-7504-3107$$aDu, Meng-Lin$$b0$$eCorresponding author
000903225 245__ $$aRevisiting the nature of the Pc pentaquarks
000903225 260__ $$a[Trieste]$$bSISSA$$c2021
000903225 3367_ $$2DRIVER$$aarticle
000903225 3367_ $$2DataCite$$aOutput Types/Journal article
000903225 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638864549_11321
000903225 3367_ $$2BibTeX$$aARTICLE
000903225 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903225 3367_ $$00$$2EndNote$$aJournal Article
000903225 520__ $$aThe nature of the three narrow hidden-charm pentaquark Pc states, i.e., Pc(4312), Pc(4440) and Pc(4457), is under intense discussion since their discovery from the updated analysis of the process Λ0b→J/ψpK− by LHCb. In this work we extend our previous coupled-channel approach [Phys. Rev. Lett. 124, 072001 (2020)], in which the Pc states are treated as Σ(∗)cD¯¯¯¯(∗) molecules, by including the ΛcD¯¯¯¯(∗) and ηcp as explicit inelastic channels in addition to the J/ψp, as required by unitarity and heavy quark spin symmetry (HQSS), respectively. Since inelastic parameters are very badly constrained by the current data, three calculation schemes are considered: (a) scheme I with pure contact interactions between the elastic, i.e., Σ(∗)cD¯¯¯¯(∗), and inelastic channels and without the ΛcD¯¯¯¯(∗) interactions, (b) scheme II, where the one-pion exchange (OPE) is added to scheme I, and (c) scheme III, where the ΛcD¯¯¯¯(∗) interactions are included in addition. It is shown that to obtain cutoff independent results, OPE in the multichannel system is to be supplemented with S-wave-to-D-wave mixing contact terms. As a result, in line with our previous analysis, we demonstrate that the experimental data for the J/ψp invariant mass distribution are consistent with the interpretation of the Pc(4312) and Pc(4440)/Pc(4457) as ΛcD¯¯¯¯ and ΣcD¯¯¯¯∗ hadronic molecules, respectively, and that the data show clear evidence for a new narrow state, Pc(4380), identified as a Σ∗cD¯¯¯¯ molecule, which should exist as a consequence of HQSS. While two statistically equally good solutions are found in scheme I, only one of these solutions with the quantum numbers of the Pc(4440) and Pc(4457) being JP = 3/2− and 1/2−, respectively, survives the requirement of regulator independence once the OPE is included. Moreover, we predict the line shapes in the elastic and inelastic channels and demonstrate that those related to the Pc(4440) and the Pc(4457) in the Σ(∗)cD¯¯¯¯ and ηcp mass distributions from Λ0b→Σ(∗)cD¯¯¯¯K− and Λ0b→ηcpK− will shed light on the quantum numbers of those states, once the data are available. We also investigate possible pentaquark signals in the ΛcD¯¯¯¯(∗) final states.
000903225 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation  Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000903225 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000903225 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903225 7001_ $$0P:(DE-HGF)0$$aBaru, Vadim$$b1
000903225 7001_ $$0P:(DE-HGF)0$$aGuo, Feng-Kun$$b2
000903225 7001_ $$0P:(DE-Juel1)131182$$aHanhart, Christoph$$b3$$ufzj
000903225 7001_ $$0P:(DE-Juel1)131252$$aMeissner, Ulf-G.$$b4$$ufzj
000903225 7001_ $$0P:(DE-HGF)0$$aOller, José A.$$b5
000903225 7001_ $$0P:(DE-HGF)0$$aWang, Qian$$b6
000903225 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP08(2021)157$$gVol. 2021, no. 8, p. 157$$n8$$p157$$tJournal of high energy physics$$v2021$$x1029-8479$$y2021
000903225 8564_ $$uhttps://juser.fz-juelich.de/record/903225/files/Du2021_Article_RevisitingTheNatureOfThePcPent.pdf$$yOpenAccess
000903225 909CO $$ooai:juser.fz-juelich.de:903225$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131182$$aForschungszentrum Jülich$$b3$$kFZJ
000903225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b4$$kFZJ
000903225 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000903225 9141_ $$y2021
000903225 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000903225 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000903225 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903225 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000903225 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HIGH ENERGY PHYS : 2019$$d2021-01-30
000903225 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ HIGH ENERGY PHYS : 2019$$d2021-01-30
000903225 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-30
000903225 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-30
000903225 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000903225 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000903225 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000903225 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903225 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-30
000903225 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000903225 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000903225 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000903225 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-01-30
000903225 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000903225 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000903225 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000903225 9801_ $$aFullTexts
000903225 980__ $$ajournal
000903225 980__ $$aVDB
000903225 980__ $$aUNRESTRICTED
000903225 980__ $$aI:(DE-Juel1)IAS-4-20090406
000903225 980__ $$aI:(DE-Juel1)IKP-3-20111104
000903225 981__ $$aI:(DE-Juel1)IAS-4-20090406