000903228 001__ 903228
000903228 005__ 20220103172054.0
000903228 0247_ $$2doi$$a10.1103/PhysRevB.104.134101
000903228 0247_ $$2ISSN$$a1098-0121
000903228 0247_ $$2ISSN$$a2469-9977
000903228 0247_ $$2ISSN$$a0163-1829
000903228 0247_ $$2ISSN$$a0556-2805
000903228 0247_ $$2ISSN$$a1095-3795
000903228 0247_ $$2ISSN$$a1538-4489
000903228 0247_ $$2ISSN$$a1550-235X
000903228 0247_ $$2ISSN$$a2469-9950
000903228 0247_ $$2ISSN$$a2469-9969
000903228 0247_ $$2Handle$$a2128/29373
000903228 0247_ $$2altmetric$$aaltmetric:114898886
000903228 0247_ $$2WOS$$aWOS:000704471500001
000903228 037__ $$aFZJ-2021-04935
000903228 082__ $$a530
000903228 1001_ $$0P:(DE-HGF)0$$aBoldrin, David$$b0$$eCorresponding author
000903228 245__ $$aBarocaloric properties of quaternary Mn 3 (Zn , In) N for room-temperature refrigeration applications
000903228 260__ $$aWoodbury, NY$$bInst.$$c2021
000903228 3367_ $$2DRIVER$$aarticle
000903228 3367_ $$2DataCite$$aOutput Types/Journal article
000903228 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638948524_15940
000903228 3367_ $$2BibTeX$$aARTICLE
000903228 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903228 3367_ $$00$$2EndNote$$aJournal Article
000903228 520__ $$aThe magnetically frustrated manganese nitride antiperovskite family displays significant changes of entropy under hydrostatic pressure that can be useful for the emerging field of barocaloric cooling. Here we show that barocaloric properties of metallic antiperovskite Mn nitrides can be tailored for room-temperature application through quaternary alloying. We find an enhanced entropy change of |ΔSt|=37JK−1kg−1 at the Tt=300K antiferromagnetic transition of quaternary Mn3Zn0.5In0.5N relative to the ternary end members. The pressure-driven barocaloric entropy change of Mn3Zn0.5In0.5N reaches |ΔSBCE|=20JK−1kg−1 in 2.9 kbar. Our results open up a large phase space where compounds with improved barocaloric properties may be found.
000903228 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000903228 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903228 7001_ $$0P:(DE-Juel1)190325$$aMendive Tapia, Eduardo$$b1$$ufzj
000903228 7001_ $$00000-0002-7698-4945$$aZemen, Jan$$b2
000903228 7001_ $$00000-0002-3578-8753$$aStaunton, Julie B.$$b3
000903228 7001_ $$00000-0003-2800-3927$$aGomes, Angelo M.$$b4
000903228 7001_ $$00000-0002-5667-6531$$aGhivelder, Luis$$b5
000903228 7001_ $$0P:(DE-HGF)0$$aHalpin, John$$b6
000903228 7001_ $$0P:(DE-HGF)0$$aGibbs, Alexandra S.$$b7
000903228 7001_ $$00000-0001-7503-5898$$aAznar, Araceli$$b8
000903228 7001_ $$00000-0002-7965-0000$$aTamarit, Josep-Lluís$$b9
000903228 7001_ $$00000-0003-4133-2223$$aLloveras, Pol$$b10
000903228 7001_ $$0P:(DE-HGF)0$$aMoya, Xavier$$b11
000903228 7001_ $$0P:(DE-HGF)0$$aCohen, Lesley F.$$b12
000903228 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.104.134101$$gVol. 104, no. 13, p. 134101$$n13$$p134101$$tPhysical review / B$$v104$$x1098-0121$$y2021
000903228 8564_ $$uhttps://juser.fz-juelich.de/record/903228/files/PhysRevB.104.134101.pdf$$yOpenAccess
000903228 909CO $$ooai:juser.fz-juelich.de:903228$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190325$$aForschungszentrum Jülich$$b1$$kFZJ
000903228 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000903228 9141_ $$y2021
000903228 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000903228 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000903228 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000903228 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000903228 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000903228 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2019$$d2021-05-04
000903228 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000903228 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000903228 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000903228 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903228 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000903228 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000903228 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000903228 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000903228 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000903228 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000903228 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000903228 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000903228 980__ $$ajournal
000903228 980__ $$aVDB
000903228 980__ $$aUNRESTRICTED
000903228 980__ $$aI:(DE-Juel1)IAS-1-20090406
000903228 980__ $$aI:(DE-Juel1)PGI-1-20110106
000903228 980__ $$aI:(DE-82)080009_20140620
000903228 980__ $$aI:(DE-82)080012_20140620
000903228 9801_ $$aFullTexts