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The uniform motion of chiral magnetic skyrmions induced by a spin-transfer torque displays an intricate
dependence on the skyrmions’ topological charge and shape. We reveal surprising patterns in this dependence
through simulations of the Landau-Lifshitz-Gilbert equation with Zhang-Li torque and explain them through a
geometric analysis of Thiele’s equation. Our results provide a universal geometrical understanding of the depen-
dence of the skyrmion’s velocity and Hall angle on the skyrmion’s topological charge, shape, and orientation. The
generality of our approach suggests the validity of our results for exchange-frustrated magnets, bubble materials,
and other materials.
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I. INTRODUCTION

Skyrmions are examples of topological solitons: sta-
ble, particlelike configurations in nonlinear field theories.
Originally introduced in the context of nuclear physics by
Skyrme [1], the term “skyrmion” is now widely used and has
found applications in several distinct areas of physics. This
paper is about the dynamics of magnetic skyrmions (Sks)
to which we attribute all stable solutions of the static field
equations, even when the topological charge is zero.

Since the pioneering works by Bogdanov and coau-
thors [2–5], both the static and dynamic properties of
axisymmetric solutions representing vortexlike spin textures
known as kπ -Sks [Fig. 1(a)] have been studied extensively.
However, as in the nuclear Skyrme model, removing the as-
sumption of axisymmetry reveals an extraordinary diversity
of solutions with arbitrary topological charge. Their static
properties have only recently been studied [7–11], and very
little is known about their dynamics [12–14].

In the nuclear Skyrme model, understanding static so-
lutions provides only very limited insights into dynamical
properties. By contrast, for magnetic Sks the static solutions
allow one to deduce interesting features of their dynamics, for
instance, in response to an applied current. This fact is ex-
plained and exploited in this paper. Drawing on the full range
of recently discovered static Sks, we report a striking result:
the distribution of the response velocities has a ringlike shape,
as shown in Fig. 1(b). We provide a comprehensive analysis
of this phenomenon which implies a geometric understanding
of the Sk Hall angle valid for any Sk and irrespective of the
stabilization mechanism and underlying Hamiltonian.

*v.kuchkin@fz-juelich.de

II. MODEL AND METHODS

Our results are obtained with numerical micromagnetic
simulations based on the Landau-Lifshitz-Gilbert equation
with Zhang-Li spin-transfer torque (STT) [15] and an analytic
method based on the Thiele approach. The latter provides a
full mathematical understanding of the ringlike distribution
and is confirmed by the former.

We consider the two-dimensional (2D) micromagnetic
model for a chiral magnet containing three main energy terms:

E =
∫

{wex(n) + wD(n) + wU(n)} ldxdy, (1)

where n = M/Ms is the magnetization unit vector
field uniform across the film thickness l , Ms is the
saturation magnetization, wex = A|∇n|2 is the Heisenberg
exchange interaction, and wU = −MsBext · n − Kn2

z is the
potential term containing the Zeeman interaction and the
easy-axis/easy-plane anisotropy. The external magnetic field
is perpendicular to the plane of the film, Bext ‖ ez.

The Dzyaloshinskii-Moriya interaction (DMI) [16,17]
term wD(n) = Dw(n) is defined by combinations of Lif-
shitz invariants, �

(k)
i j =ni∂kn j −n j∂kni. The results presented

below are valid for systems with Bloch-type modula-
tions [18] and Néel-type modulations [19–21], as well as
for crystals with D2d or S4 point group symmetry [2].
Without loss of generality, in our calculations we assume
Bloch-type DMI where w(n)=�(x)

zy +�
(y)
xz . Introducing the

characteristic size of chiral modulations LD = 4πA/D and
the characteristic magnetic field BD = D2/(2MsA), we re-
duce the number of independent parameters to two, namely,
the dimensionless external magnetic field h = Bext/BD and
anisotropy u = K/(MsBD).

The motion of Sks can be caused by different stimuli,
e.g., the gradient of the internal or external parameters and
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FIG. 1. (a) Schematic representation of the trajectories of chi-
ral Sks moving under electric current j with skyrmion Hall angle
β. The spin texture for π -Sk in the inset explains the color code.
The antiskyrmion is provided as an example of a Sk with chiral
kinks [10]. (b) The velocity distribution for a wide diversity of Sks
obtained in micromagnetic simulations at different values of the
external magnetic field h and anisotropy u. The velocities are given in
reduced units with respect to the velocity of 2π -Sk. The simulations
are performed at realistic values of the Gilbert damping, α = 0.06,
and the degree of nonadiabaticity, ξ = 0.1. The velocities repre-
sented by the circle symbols lie on a perfect circle with the center
at v‖ = 0.8, v⊥ = 0 irrespective of h and u. The velocities marked by
the stretched star symbols lie in close vicinity to that circle. Movie 1
in the Supplemental Material [6] illustrates the steady motion of the
skyrmion bag depicted in (a) as a representative example.

spin-orbit or spin-transfer torques [22–25]. Here we consider
the particular case of the Zhang-Li STT [15]. The Landau-
Lifshitz-Gilbert (LLG) equation [26] in this case has the
form

∂n
∂t

= −γ n × Heff + αn × ∂n
∂t

− TZL, (2)

where γ is the gyromagnetic ratio, α is the Gilbert damping,
Heff = − 1

Ms

δE
δn is the effective field, and the last term is the

Zhang-Li torque:

TZL = n × [n × (I · ∇)n] + ξ n × (I · ∇)n, (3)

where the vector I = jμB p(1+ξ 2)−1(eMs)−1 is proportional
to the current density j, ξ is the degree of nonadiabaticity [27],
p is the polarization of the spin current, μB is the Bohr mag-
neton, and e is the electron charge.

We study the solutions of Eq. (2) corresponding to uni-
form motion of magnetic Sks using different values for h
and u in our micromagnetic simulations for a large diver-
sity of Sks. The resulting velocity distribution is shown in
Fig. 1(b). For details regarding the numerical simulations

see Appendixes A–C. To explain the ringlike shape of this
distribution we use analytical methods, to which we now turn.

The uniform motion of magnetic textures is well described
by Thiele’s equation [28], which can be derived from (2) and
has the following form [29]:

−Q ez×(V + I) − 
(αV + ξI) = 0, (4)

where V = (Vx,Vy)T is the velocity vector of the Sk moving
as a rigid object, i.e., n(r, t ) = n0(r − Vt ). The two essential
parameters in (4) are the topological charge [30]

Q = 1

4π

∫
n · (∂xn × ∂yn) dxdy (5)

and the dissipation tensor 
, whose components are [25,31]


i j = 1

4π

∫
(∂in · ∂ jn)dxdy, i, j = x, y. (6)

Equation (4) has a simple algebraic form, but to solve it
for V one has to find the Sk profile n0 [which, in general,
should be consistent with the LLG equation (2)] and calculate
the integrals in (5) and (6). Previous studies [29,32] showed
that for low current density the uniform motion has only a
secondary effect on the skyrmion profile. Therefore, the tensor

 can be calculated with good accuracy from n0 represent-
ing a static equilibrium configuration found by direct energy
minimization. This semianalytical approach shows very good
agreement with the results of direct micromagnetic simula-
tions based on the LLG equation (2).

Note that we apply the fourth-order finite-difference
scheme only to calculate the magnetization spatial derivatives
in the Hamiltonian (1) and, consequently, in the effective field
term in the LLG equation (2), while magnetization gradients
in the STT term in MUMAX are calculated with only second-
order accuracy. The latter may lead to small discrepancies
between the LLG simulations and Thiele’s approach. Never-
theless, in our calculations, the difference never exceeds a few
percent when we compare the velocity components.

III. SKYRMION SYMMETRY

As a symmetric and positive 2 × 2 matrix, 
 can be
brought into diagonal form by conjugation with a rotation
matrix. In terms of the real eigenvalues λ1 � λ2 > 0 and the
rotation angle ψ , we have the parametrization of 
 as


 = R(ψ )

(
λ1 0
0 λ2

)
R(−ψ ), (7)

where R(ψ ) is the 2 × 2 matrix for a (mathematically posi-
tive) rotation by ψ in the plane. The angle ψ is defined as
existing only when λ1 > λ2 and takes values only in [0, π ).
It parametrizes the unoriented direction of the eigenvector for
λ1 relative to the x axis (see Appendix D). Under the trans-
formation representing the rotation of the whole spin texture
about the axis normal to the plane,

n′(r) = R(±ϕ) n(R(−ϕ)r), (8)

the angle ψ shifts to ψ + ϕ (see Appendix D). Here R(ϕ) is
the 3 × 3 matrix for a rotation by ϕ about the z axis, and the ±
sign depends on the symmetry of the Lifshitz invariant used.
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FIG. 2. (a) The set of representative HSSks with different orders of the rotational symmetry ks and topological charge Q. (b) The velocities
of Sks depicted in (a), calculated with the semianalytical approach for Gilbert damping α = 1/4, degree of nonadiabaticity ξ/α = 5/3, and
various values of h and u, as indicated by the different colors. The velocity of topologically trivial solutions, e.g., the chiral droplet and 2π -Sk
(see insets), is marked by a magenta circle, v‖ = 1, v⊥ = 0. Red and blue half circles correspond to Q > 0 and Q < 0, respectively. (c) The
change in the distribution of velocities on the circle in terms of angle ρ for the solitons depicted in (a) as a function of α ∈ (0, 0.6] for fixed
ξ/α = 5/3. The dashed line corresponds to damping parameter α = 1/4 as in (b). (d) The transformation of the circle (11) under varying α at
fixed ξ = 0.5. The circles correspond to α in the interval [0.001, 1] with �α = 0.111. (e) The transformation of the circle (11) at fixed α = 0.5
and ξ varying in the interval [0.01, 1] with �ξ = 0.11. Black dots in (a) and (b) are the velocities of ordinary π -Sk.

The transformation (8) represents a zero-energy mode for
the Hamiltonian (1) and can be used to define the rotational
symmetry of Sks. When the transformation (8) with ϕ =
2π/k is trivial for some positive integers k, so that n′ = n, we
say that Sk has a rotational symmetry of order ks = max(k).
For axially symmetric Sks the invariance holds for any k, and
we write ks = ∞ [Fig. 2(a)].

IV. GEOMETRY OF THE THIELE EQUATION

To reveal the geometry in Thiele’s equation, we introduce
the parameters

ρ = 2 tan−1

( −Q

α
√

λ1λ2

)
, ϑ = ln

√
λ1

λ2
(9)

and write the general solution of (4) in an orthonormal basis
(e‖, e⊥), where e‖ is antiparallel to j, as

v = V/V0 = (vb + Rb cos ρ)e‖
+ Rb sin ρ[cosh ϑ − sinh ϑ R(2ψ )P]e⊥, (10)

where V0 = ξ |I|/α is the speed of the skyrmionium [29], P is
the matrix for the reflection on the x axis, and the parameters
vb = 1

2 (ξ + α)/ξ and Rb = 1
2 (ξ − α)/ξ are determined by the

Gilbert damping and the degree of nonadiabaticity. For the
derivation of (10) and a general discussion of its geometry,
see Appendixes E and F. The parameter ρ vanishes for any
Sk with Q = 0, while necessarily ϑ = 0 (λ1 = λ2) for Sks
with ks > 2 (see Appendix D). These facts motivate splitting
all Sks into three classes: topologically trivial Sks (TTSks)
with Q = 0, high-symmetry Sks (HSSks) with ks > 2, and
low-symmetry Sks (LSSks) with ks = 1 or 2.

Formula (10) captures the geometry referred to in the title
and provides the key to understanding the ringlike velocity
distribution depicted in Fig. 1(b). For TTSks, the velocity
takes the single value v = e‖, regardless of ks. The velocities
of HSSks with ϑ = 0 but different values of ρ lie on a circle
with radius Rb and center vbe‖ (Fig. 2). In terms of the com-
ponents of v with respect to the basis (e‖, e⊥), we have

λ1 = λ2 ⇒ (v‖ − vb)2 + v2
⊥ = R2

b. (11)

For fixed ξ/α, irrespective of the external magnetic field h and
anisotropy u, which significantly change the shape and size
of the Sks (Fig. S3(a) in the Supplemental Material [6]), the
velocities of all HSSks are restricted to the same circle (11).
Figure 2(b) illustrates the physical meaning of the parameter
ρ, which defines the position of a HSSk on the circle. The
angle ρ is linked to the experimentally measurable Sk Hall
angle [25] β = arctan(v⊥/v‖) via

tan β = sin ρ sin βmax

1 + cos ρ sin βmax
, (12)

where βmax = arcsin (Rb/vb) is the maximal Sk Hall angle
for HSSks. This provides the promised geometrical interpre-
tation of the Hall angle for HSSk. The velocities of HSSks
with Q < 0 and Q > 0 occupy half of the circle in the up-
per or lower half plane depending on sgn(ξ − α) [Figs. 2(d)
and 2(e)]. When ξ = α, the velocity circle degenerates into
a single point, meaning that all Sks move with the same
velocity V0 = V0e‖. The sign for the Sk Hall angle is in-
verted for the cases ξ < α and ξ > α, both experimentally
achievable [33].

Rotating a LSSk with given ϑ > 0 (λ1 > λ2) and a given
value of ρ according to (8) generates a family of con-
figurations with the same energy but with different spatial
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FIG. 3. (a)–(c)The velocity distributions for various low-symmetry Sks at different α and ξ . Some Sks are depicted in the insets. The gray
velocity circle for high-symmetry Sks (2) is provided for comparison. The velocity of low-symmetry Sks depends on the rotation angle of the
Sk with respect to the current and forms an individual circle for each low-symmetry Sk, as illustrated for the antiskyrmion with ks = 2 in (a) and
another low-symmetry Sk with ks = 1 in (c). For the orientations marked with red crosses on the circle for the antiskyrmion in (a) Movie 2 in the
Supplemental Material illustrates the soliton motion with constant orientation relative to the current, obtained in micromagnetic simulations [6].

orientations, parametrized by the angle ψ . In our simulations
we find that, after an initial transient stage, this orientation
does not change when the LSSk is subjected to a Zhang-Li
STT. Movie 1 in the Supplemental Material illustrates this
fact for the skyrmion with ks = 1 and Q = −1 depicted in
Fig. 1(a) and in the inset in Fig. 3(b). However, the steady-
state response velocity itself does depend on the orientation
and sweeps out a circle as ψ varies. Movie 2 in the Supple-
mental Material shows the steady motion of the antiskyrmion
depicted in Fig. 3(a) for different orientations relative to the
current direction indicated by red crosses on the correspond-
ing circle [6]. For any LSSk, this circle is traversed twice
when we rotate the configuration through 2π ; it has center
coordinates

vs = (vs,‖, vs,⊥) = (vb + Rb cos ρ, Rb sin ρ cosh ϑ ) (13)

and radius

Rs = Rb| sin ρ| sinh ϑ = Rb
α|Q|(λ1 − λ2)

α2λ1λ2 + Q2
. (14)

These circles tend to have radii, Rs, smaller than Rb, so we
refer to them as small circles in the following. The centers of
the small circles are generally close to the big circle (11), so
their collective effect is to generate the ringlike distribution
which we see in Fig. 1(b). As follows from (13) and (14),
the radius of a small circle and the position of its center are
linked to the parameters of the big circle via (vs,‖ − vb)2 +
(vs,⊥)2 = R2

b + R2
s , which implies that (i) any small circle and

the big circle intersect at right angles [Fig. 3(a)] and (ii) the
position of the center of any small circle is always outside
the big circle and approaches it with decreasing Rs. In the
limit Rs → 0, small circles degenerate into points on the big
circle.

For LSSks, the velocity formula (10) has an interesting
dependence on the Sk orientation, which was previously ob-
served in the context of systems with frustrated exchange
interactions [34]. It also implies a universal expression for the

Sk Hall angle which generalizes (12) for LSSks irrespective of
the underlying Hamiltonian and Sk stabilization mechanism.
We discuss the general formula and the orientational depen-
dence further in Appendix F.

We observe that the velocity of topologically nontrivial Sks
depends on α and ξ in rather different ways. We illustrate this
for the case of π -Sks using red circles in Figs. 2(d) and 2(e),
respectively. When α is constant, the trace of (v‖(ξ ), v⊥(ξ ))
is a straight line, while keeping ξ constant but varying α

produces yet another circle,(
v‖ − 1

2

)2

+
(

v⊥ − Q

2λξ

)2

= 1

4

(
1 + Q2

λ2ξ 2

)
, (15)

where λ = λ1 = λ2.
It is natural to ask which Sks move the fastest at fixed

dynamical parameters (I, α, ξ ). For α < ξ , TTSks move with
speed v = 1, bounding the speed of HSSks. However, LSSks
can exceed this speed if the radius Rs (14) is sufficiently large
and the Sk has a suitable orientation. Since Rs is directly
proportional to the difference λ1 − λ2 of the eigenvalues of the
dissipation tensor, elongated Sks with λ1 
 λ2 are good can-
didates for high-speed motion. For the antiskyrmion, λ1/λ2

is of order 5; according to Thiele’s equation, its speed can
exceed v = 1. This is illustrated in Fig. 3(a) and confirmed
by numerical simulations of the LLG equation. Furthermore,
it follows from (F1) that, when λ1 − λ2 > 2|Q|/α, the lon-
gitudinal component of the LSSk velocity v‖ exceeds 1 for
a suitably chosen orientation. For instance, for α = 0.9, ξ =
1.5, h = 0.3, and u = 0.55, the antiskyrmion satisfies this
condition and can travel with v‖ > 1. Therefore, contrary to
what one might deduce from Fig. 3(a), the longitudinal ve-
locity of the TTSk can be exceeded by that of LSSks which
satisfy the condition above.

V. CONCLUSIONS

We showed that the Sk velocity distribution can be under-
stood by splitting all Sks into high-symmetry, low-symmetry,
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and topologically trivial ones. Irrespective of the magnetic
field and anisotropy, the velocities of high-symmetry Sks all
lie on the circle (11). The radius Rb of that circle depends
exclusively on the current density j, Gilbert damping α, and
the coefficient of nonadiabaticity of the electric current ξ . The
low-symmetry Sks exhibit an even more intriguing behavior:
their velocities depend on the Sk orientation with respect to
the current direction, and when we vary the orientation for
a given Sk, the velocities sweep out a circle with a radius
which is generally smaller than Rb. The combination of small
circles near the big circle (11) produces the ringlike distri-
bution [Fig. 1(b)]. The variation of α and ξ can lead to the
degeneration of all those circles into one point when all Sks
move along one trajectory with the same velocity.

Due to the generality of our approach, the presented results
are valid not only for chiral magnets of various symmetries
but also for frustrated magnets and bubble domain materials
(see Appendix G).
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APPENDIX A: MICROMAGNETIC SIMULATIONS

Micromagnetic simulations were performed with the MU-
MAX code [35] on a rectangular domain with shape Lx×Ly

with periodic boundary conditions (PBCs). In general, the
interaction between the skyrmion instances because of PBCs
may change the dynamics of the skyrmions. This effect be-
comes especially pronounced when the domain of simulation
is so small that it affects the shape and thus the symmetry of
the skyrmion. To diminish this effect as much as possible we
use large size domains, Lx, Ly ∼ 10LD.

To improve the accuracy in the LLG simulations, in-
stead of the second-order finite-difference scheme used by
default in MUMAX, we implemented a fourth-order scheme
in the spirit of the approach suggested by Donahue and
McMichael [36]. For details, see Appendix B, where we
discuss various aspects of the accuracy in micromagnetic
simulations, and Appendix C, where we provide the MU-
MAX script with the fourth-order finite-difference scheme
implemented.

The skyrmion position can be traced using the approach
suggested in Ref. [37], which is based on the formula for the
center of mass of a nonuniform rod, but with the topological
density—the integrand in Eq. (5) or magnon density [38] as in
Ref. [29]—playing the role of distributed mass. In long-time
dynamics, when the skyrmion can cross the boundary of the
simulated domain with PBCs multiple times, this approach
needs to be adapted. In particular, when the skyrmion comes

near the boundary of the simulation domain and part of it
appears on the opposite side of the simulated domain, this
formula suggests that the skyrmion slows down and starts
to move in the opposite direction. We suggest an alternative
approach to calculate the center of the skyrmion, which fol-
lows from the solution of the problem for the center of mass
of a nonuniform ring. The skyrmion position, (xp, yp) can be
defined as follows:

xp = Lx

2π
tan−1

∫
Ny sin (2πx/Lx)dx∫
Ny cos (2πx/Lx)dx

+ lxLx, (A1)

yp = Ly

2π
tan−1

∫
Nx sin (2πy/Ly)dy∫
Nx cos (2πy/Ly)dy

± lyLy, (A2)

where Nx ≡ Nx(y) = ∫
(1 − nz)dx and Ny ≡ Ny(x) =∫

(1 − nz)dy are the magnon densities averaged along x and
y, respectively. The integer numbers lx and ly indicate how
many times the skyrmion has crossed the domain boundary
in the x and y directions, respectively. The sign in front of
ly depends on whether the skyrmion crosses the boundary in
the positive or negative direction of the corresponding axis,
which in turn depends on the sign for the deflection angle
β. Since, in our setup [Fig. 1(a)], the skyrmions move along
the positive x axis, the sign in front of lx is always positive.
The approach to trace the position of the soliton presented
here is similar to that for calculating the center of mass for a
set of point masses that are distributed in the unbounded 2D
environment presented in Ref. [39].

The initial spin configurations for various types of
skyrmions were either manually crafted according to the
method described in Ref. [7] or constructed through analytical
functions as in Ref. [10].

APPENDIX B: ACCURACY OF MICROMAGNETIC
SIMULATIONS

Insufficient accuracy in the numerical calculation of
the magnetization spatial derivatives with finite-difference
schemes may lead to artifacts in micromagnetic simulations
and provide misleading or inconsistent results. This becomes
especially important for skyrmions with a complex shape and
large size. In Ref. [7] we showed that the second-order finite-
difference scheme often used in micromagnetic calculations
may lead to significant discrepancies with the exact solution
even when quite dense meshes with ∼100 nodes per LD are
used. There, we also showed that the accuracy of energy
calculations can be improved approximately by an order of
magnitude in the case of the fourth-order scheme [36]. We
found that in the case of LLG dynamics, the second-order
scheme may provide artifacts that one can get rid of by
employing a fourth-order discretization scheme. For better
consistency of LLG simulations and numerical solutions of
Thiele’s equation it is also advisable to use the fourth-order
discretization scheme in the numerical calculations of inte-
grals (6).

Two representative examples of the artifacts occur due to
insufficient accuracy in the numerical calculations. The first
one is the nonzero deflection angle of topologically trivial
skyrmions. According to the general solution of Thiele’s equa-
tion [see Eq. (10)], for Q = 0 (so ρ = 0), the component of
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FIG. 4. (a) The initial configuration for an antiskyrmion with the rotation by ϕ = −π/12 and (b) the corresponding state after energy
minimization. (c) and (d) The initial and relaxed states for an antiskyrmion with ϕ = −π/4. See Movie 2 in the Supplemental Material for
steady motion of antiskyrmions with different ϕ.

the soliton velocity transverse to the current must be zero
irrespective of soliton symmetry [see, e.g., the skyrmionium
and chiral droplet in Fig. 2(b)]. An axisymmetric soliton,
for instance, skyrmionium, may lose its axial symmetry
while in steady motion [29]. Nevertheless, in the case of
Q = 0, after the transient stage is over and the skyrmion
speed reaches saturation, its transverse velocity component
must be zero. The nonzero transverse component of the ve-
locity for solitons with Q = 0 indicates either inaccuracy
of the numerical scheme or that the instantaneous velocity
is estimated before steady-state motion is reached [12,40–
43]. One can use the steady motion of topologically

trivial solitons without deflection to test numerical scheme
accuracy.

Another artifact which can be observed in LLG simulations
is the rotation of the soliton with respect to its initial state at
t = 0. With the second-order finite-difference scheme, low-
symmetry skyrmions, during the transient state or even during
the initial energy minimization, rotate such that their long
axis coincides with one of the diagonals of the underlying
rectangular mesh (see Fig. 4). A high mesh density and the
fourth-order finite-difference scheme eliminate this effect and
make the behavior of the solitons consistent with the general
solution of Thiele’s equation (10).

APPENDIX C: MUMAX SCRIPT

/*Mumax script with the fourth-order finite difference scheme implemented for 2D with PBC*/
h := 0.3 // [ ] dimensionless external magnetic field
u := 0.55 // [ ] dimensionless anisotropy
/****************************************** Material constants *******************************/
LD := 128.0e-9 // [ nm ]
Ms := 384e3 // [ A/m ]
A := 4.0e-12 // [ J/m ]
D := 4.0 * pi * A / LD // [ J/m^2 ]
BD := D*D/(2*A*Ms) // [ T ]
B := h*BD // [ T ]
K := u*D*D/(2*A) // [ J/m^3 ]
Ku1 = K // [ J/m^3 ]
B_ext = vector(0,0,B) // [ T ] External field vector
anisU = vector(0, 0, 1) // [ ] Anisotropy unit vector
/*********************************** Sets GridSize, CellSize and PBC *************************/
nx := 256; ny := 256; nz := 1;
Lx := 2*LD; Ly := Lx; Lz := 1e-9;
dx := Lx/nx; dy := Ly/ny; dz := Lz/nz;
SetMesh(nx, ny, nz, dx, dy, dz, 1, 1, 0);
/************************************** Initial state, see Ref. [9] **************************/
l := 60; //size of Ask
f := -pi/12; //rotation angle with respect to initial configuration
for ix:=0; ix<nx; ix++ {
for iy:=0; iy<ny; iy++ {
rx := (ix - 0.5*nx)*Lx/LD;
ry := (iy - 0.5*ny)*Ly/LD;
rxp := (rx*cos(f-pi/4) + ry*sin(f-pi/4))/l;
ryp := (ry*cos(f-pi/4) - rx*sin(f-pi/4))/l;
gm := 5*(rxp*rxp + ryp*ryp)/4 - 2*rxp*ryp -1;
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gp := 1/(5*(rxp*rxp + ryp*ryp)/4 - 2*rxp*ryp +1);
m1 := gp*(2*rxp - ryp);
m2 := gp*(rxp - 2*ryp);
m3 := gp*gm;
mnew:=vector(m1*cos(f-pi/4)-m2*sin(f-pi/4), m2*cos(f-pi/4)+m1*sin(f-pi/4), m3);
m.SetCell(ix, iy, 0, mnew);
}

}
save(m) // see Fig. 4 a and c
/**************************************** The 2th order scheme *******************************/
// Msat = Ms
// Aex = A
// Dbulk = D
/**************************************** The 4th order scheme *******************************/
Msat = Ms
Aex = A*(4/3) // Exchange constant for nearest neighbor
Dbulk = D*(4/3) // DMI constant for nearest neighbor
/**************************************** Fourth order Exchange ******************************/
NewAex:= A*(-1/12)
prefactorXA := Const( (2 * NewAex) / (dx*dx*Msat.Average()))
prefactorYA := Const( (2 * NewAex) / (dy*dy*Msat.Average()))
prefactorZA := Const( (2 * NewAex) / (dz*dz*Msat.Average()))
/**************************************** Next-nearest-neighbor-X ****************************/
left := Mul(Add(Mul(Const(-1),m),Shifted(m, 2, 0, 0)),Shifted(Const(1), 2, 0, 0))
left = Add(left, Mul(Add(Mul(Const(-1),m),Shifted(m,2-nx, 0, 0)),Shifted(Const(1),2-nx, 0, 0)))
/**************************************** Next-nearest-neighbor+X ***************************/
right:= Mul(Add(Mul(Const(-1),m),Shifted(m, -2, 0, 0)),Shifted(Const(1), -2, 0, 0))
right = Add(right,Mul(Add(Mul(Const(-1),m),Shifted(m,nx-2, 0, 0)),Shifted(Const(1),nx-2, 0, 0)))
/**************************************** Next-nearest-neighbor-Y ****************************/
backward:= Mul(Add(Mul(Const(-1),m),Shifted(m, 0, 2, 0)),Shifted(Const(1), 0, 2, 0))
backward = Add(backward,Mul(Add(Mul(Const(-1),m),Shifted(m, 0,2-ny, 0)),Shifted(Const(1),
0,2-ny, 0)))

/**************************************** Next-nearest-neighbor+Y ***************************/
forward:= Mul(Add(Mul(Const(-1),m),Shifted(m, 0, -2, 0)),Shifted(Const(1), 0, -2, 0))
forward = Add(forward, Mul(Add(Mul(Const(-1),m),Shifted(m, 0,nx-2, 0)),Shifted(Const(1),
0,nx-2, 0)))

leftA := Mul(prefactorXA,left)
rightA := Mul(prefactorXA,right)
forwardA := Mul(prefactorYA,forward)
backwardA := Mul(prefactorYA,backward)
/************************ Exchange custom effective field next-nearest-neighbor **************/
BcA := Add(leftA,Add(rightA,Add(forwardA,backwardA)))
AddFieldTerm(BcA)
addEdensTerm(Mul(Const(-0.5),Dot(BcA,M_full)))
/****************************************** Fourth order DMI *********************************/
NewD:= D*(-1/6)
prefactorXD := Const( (2 * NewD) / (2*dx*Msat.Average()))
prefactorYD := Const( (2 * NewD) / (2*dy*Msat.Average()))
prefactorZD := Const( (2 * NewD) / (2*dz*Msat.Average()))
/**************************************** Next-nearest-neighbor X*****************************/
overx := Mul(prefactorXD,Add(Cross(left,constVector(-1,0,0)),Cross(right,constVector(1,0,0))))
/**************************************** Next-nearest-neighbor Y*****************************/
overy := Mul(prefactorYD, Add(Cross(backward,constVector(0,-1,0)),Cross(forward,
constVector(0,1,0))))

/*************************** DMI custom effective field next-nearest-neighbor ****************/
BcDMI := Add( overx, overy ) AddFieldTerm(BcDMI) addEdensTerm(Mul(Const(-0.5),Dot(BcDMI,M_full)))
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/******************************************** Relax initial state ****************************/
TableAdd(Edens_total)
EnableDemag = false
relax()
minimize()
TableSave()
save(m) // see Figs. 4b and 4d
alpha = 0.06 // [ ] Gilbert damping
/**************************************** Electric current parameters ************************/
hb:= 1.054571817e-34 // [ J*s ] Planck constant h-bar, h/(2*pi)
em:= 9.1093837015e-31 // [ kg ] the electron rest mass
Pol = 1.0 // [ ] electric current polarization
xi = 0.1 // [ ] the degree of non-adiabaticity
jx:= 5e9 // [A/m^2] electric current density
j = vector(-jx, 0, 0) // [A/m^2] vector along the negative x-axis
I:= hb/(2*em)*jx*Pol.Average()/Ms/(1+xi.Average()*xi.Average())
print(‘‘I=’’,I) // print the value of electric current parameter, I
/*********************************************** Run simulation ******************************/
t_total := 100e-9 // [ s ]
tableautosave(1e-12) // [ s ]
autosave( m, 10e-11) // [ s ]
run(t_total)

APPENDIX D: SKYRMION ROTATION AND
DISSIPATION TENSOR

The skyrmions possessing rotational symmetry of order
ks > 2 have the property that the response velocity determined
by Thiele’s equation (4) is invariant under the rotation (8)
of a skyrmion by an arbitrary angle ϕ, while for skyrmions
with ks = 1 or 2, the response velocity in general depends
on the rotation angle. This statement can be proven as fol-
lows. Inserting (8) into (5) and (6), one can show that for
any configuration localized in space, the topological charge
Q is invariant under such rotations. On other hand, the dis-
sipation tensor transforms according to 
′ = R(ϕ) 
 R(−ϕ),
where R(ϕ) is the 2 × 2 matrix for a (mathematically positive)
rotation by ϕ in the plane (Fig. 5). This transformation law has
the more convenient representation

S′ = R(2ϕ)S, (D1)

where S is a 2D vector, S = (
xx − 
yy, 2
xy)T. If the spin
texture is invariant under rotations by angles ϕ = 2π/ks (n′ =
n), it follows that 
′ = 
 and S′ = S for those angles. For
skyrmions with ks = 1 or 2, this condition is satisfied auto-
matically since R(4π/ks) is the identity matrix, R = id. For
such spin configurations, the components of the vector S and

 tensor may, strictly speaking, take any value. For skyrmions
with rotational symmetry ks > 2, on the other hand, it follows
that S must be a zero vector, and thus, 
xx = 
yy, 
xy = 0,
meaning that 
 is proportional to an identity matrix, 
 =
1
2 (
xx + 
yy) id = 1

2 Tr(
) id. It follows from (D1) that for
such skyrmions the dissipation tensor and, as a result, the
velocities determined by Thiele’s equation (4) are, indeed,
invariant under rotations (8) by an arbitrary angle ϕ. Moti-
vated by this proof, we distinguish topologically nontrivial
skyrmions by their symmetry. We refer to skyrmions with
ks = 1 or 2 as low-symmetry skyrmions and to skyrmions with
ks > 2 as high-symmetry skyrmions.

APPENDIX E: THIELE’S EQUATION AND ITS
GENERAL SOLUTION

To derive the general solution (10) of Thiele’s equation (4)
we use the abbreviation

� =
(

0 −1
1 0

)

for the π/2 rotation in the plane and write Thiele’s equation
as (


 + Q

α
�

)
V =

(

 + Q

ξ
�

)(
− ξ

α
I
)

. (E1)

FIG. 5. Illustration of the rotational zero-energy mode. The spin
texture of an antiskyrmion (a) before and (b) after the rotation by
an angle ϕ according to (8). The spin textures in (a) and (b) are
represented by the standard color code explained in Fig. 1(a). The
ellipses in (c) and (d) are the geometrical representations of a 2 × 2
matrix of 
 computed for the spin textures depicted in (a) and (b),
respectively.
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Starting with the elementary observation that


 + Q

ξ
� = ξ + α

2ξ

(

 + Q

α
�

)
+ ξ − α

2ξ

(

 − Q

α
�

)
,

we deduce

(

 + Q

α
�

)−1(

 + Q

ξ
�

)

= ξ + α

2ξ
+ ξ − α

2ξ

(

 + Q

α
�

)−1(

 − Q

α
�

)
.

With ϑ = ln
√

λ1/λ2 as in the main text, we introduce the
diagonal matrix

D(ϑ ) =
(

eϑ 0
0 e−ϑ

)

and the rotation matrix

R(ϕ) =
(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)

to write the dissipation tensor as


 = R(ψ )

(
λ1 0
0 λ2

)
R(−ψ ) =

√
λ1λ2R(ψ )D(ϑ )R(−ψ ).

Then we deduce, with tan
ρ

2
= − Q

α
√

λ1λ2
as in the main text,

that

(

 + Q

α
�

)−1(

 − Q

α
�

)
= R(ψ )

(
�−1D(ϑ ) − tan

ρ

2

)−1

×
(
�−1D(ϑ ) + tan

ρ

2

)
R(−ψ ).

Noting that �−1D(ϑ )�−1D(ϑ ) = −1 implies

cos2 ρ

2

(
�−1D(ϑ ) − tan

ρ

2

)(
�−1D(ϑ ) + tan

ρ

2

)
= −1

and using trigonometric identities, we conclude

(

 + Q

α
�

)−1(

 − Q

α
�

)
= cos ρ + sin ρ �R(ψ )D(ϑ )R(−ψ ).

Now multiplying out matrices and using the matrix

P =
(

1 0
0 −1

)

for the reflection on the x axis, we arrive at the expression

(

 + Q

α
�

)−1(

 − Q

α
�

)
= cos ρ + sin ρ �[cosh ϑ id + sinh ϑR(2ψ )P].

Using this to solve (E1) for V, switching to v, and expressing
it in terms of the orthonormal basis (e‖, e⊥) and the circle
parameters vb and Rb, one arrives at formula (10).

APPENDIX F: GEOMETRY IN VELOCITY SPACE

We prove the geometrical results related to circles and
ellipses in velocity space stated in the main text. We write
Pψ = R(2ψ )P = R(ψ )PR(−ψ ) for the reflection on the line
with polar angle ψ . Denoting the polar coordinate of the
direction e‖ by ψ‖, with ψ ′ = ψ − ψ‖, we then have

Pψe⊥ = sin(2ψ ′)e‖ − cos(2ψ ′)e⊥,

so we can express the components of the velocity v in
(10) also as

v‖ − vb = Rb[cos ρ + sinh ϑ sin(2ψ ′) sin ρ],

v⊥ = Rb sin ρ[cosh ϑ + sinh ϑ cos(2ψ ′)]. (F1)

We can use this formula to determine the orientation of a
low-symmetry skyrmion relative to the current for which the
response velocity v has the largest component v‖. This is
interesting since the angle ψ can be changed by physically
rotating a skyrmion. From (F1), we deduce that, for Q > 0,
v‖ is maximal when ψ ′ = π/4, while for Q < 0 it is maximal
when ψ ′ = 3π/4.

The Sk Hall angle β, defined via tan β = v⊥/v‖, can be
calculated from (F1). Expressed in terms of the variables
λ1, λ2, ψ

′, which parametrize the shape of the skyrmion and
its orientation, it is

tan β =
Q

(
1
ξ

− 1
α

)
(λ1 cos2 ψ ′ + λ2 sin2 ψ ′)

λ1λ2 + Q2

αξ
+ (λ2 − λ1)Q

(
1
ξ

− 1
α

)
cos ψ ′ sin ψ ′ .

(F2)

This generalizes the result (12) for high-symmetry skyrmions
given in the main text.

Finally, Eq. (F1) can be used to show that the response
velocities of skyrmions with fixed ϑ > 0 and ψ but different
values of ρ necessarily lie on an ellipse. One checks that the
velocity satisfies the equation of an ellipse,

(v‖ − vb, v⊥)M

(
v‖ − vb

v⊥

)
= R2

b,

in terms of a symmetric and positive-definite matrix M which
is determined by ϑ and ψ and is conveniently expressed in
terms of its diagonal form as

M = R(ψ )

(
λ+ 0
0 λ−

)
R(−ψ ),

with eigenvalues proportional to those of 
. In terms of the
proportionality factor κ = λ1 cos2 ψ ′ + λ2 sin2 ψ ′, they are

λ+ = λ1/κ, λ− = λ2/κ.

The lengths of the major and minor axes are therefore

a = Rb/
√

λ−, b = Rb/
√

λ+, (F3)

giving the eccentricity

ε =
√

a2 − b2

a2
=

√
λ1 − λ2

λ1
. (F4)
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The directions of the axes of the ellipse are determined by
the orthonormal basis, which also diagonalizes the dissipation
tensor, namely,

ea =
(− sin ψ

cos ψ

)
, eb =

(
cos ψ

sin ψ

)
. (F5)

Note that the major axis is in the direction of the eigenvector
for the smaller eigenvalue. The ellipses with these axes and
ellipse parameters (F3) all go through the points (α/ξ )e‖ and
e‖, as can also be seen from (F1).

We have seen that the apparently simple Thiele equa-
tion (4) captures surprising geometrical features of skyrmion
dynamics. They are revealed by the general solution (10) and
confirmed by numerical simulations. The geometrical features
provide links to several themes in two-dimensional geometry
even though the mathematics is superficially very different.
The big circle of high-symmetry skyrmion velocities provides
the most basic illustration of this point. The mapping of a line
into a circle is a standard feature of Möbius transformations
of the complex plane, and writing formula (10) for Q 
= 0 and
ϑ = 0 in terms of complex numbers gives just such a Möbius
transformation of the scale parameter λ = λ1 = λ2. The small
circles generated by varying ψ in (10) when ϑ > 0 intersect
the big circle at right angles. Circles with this property are
geodesics in the Poincaré disk model of the hyperbolic plane.
Identifying the boundary of the Poincaré disk with our big
circle therefore leads to an unexpected connection between
Thiele’s equation (4) and hyperbolic geometry. As a final
example of an unforeseen geometrical fact, the velocities of
low-symmetry skyrmions (with ϑ 
= 0) trace out an ellipse in
velocity space when their overall scale is varied. Remarkably,
this ellipse has the same eccentricity and orientation as the
ellipse defined by the dispersion tensor 
. While the big circle
and the small circles can easily be seen in simulations of actual
skyrmions and may be observable experimentally, the ellipses
in velocity space are difficult to realize since they correspond
to a special set of low-symmetry skyrmions whose dissipation
tensors have a fixed rotation angle and eigenvalue ratio.

APPENDIX G: OTHER MAGNETIC SYSTEMS,
INCLUDING CENTROSYMMETRIC ONES

Chiral magnets possess a lot of similarities with other
magnetic materials, for example, frustrated magnets [44],
hybrid systems [45–47] where chiral DMI accompanied by
frustrated exchange interactions, and magnetic bubble ma-
terials [25] films of centrosymmetric magnets with strong
easy-axis perpendicular anisotropy. Although the mechanism
for stabilization of magnetic solitons in these systems is quite
different, the ground state (spirals or stripe domains) and
the behavior of the system in an external field (the transi-
tion to a skyrmion lattice or bubble domain lattice) are very
similar. The analysis of Thiele’s equation presented here is
independent of the underlying 2D Hamiltonian. As a result,
our classification of skyrmions into high symmetry, low sym-
metry, and topologically trivial can be applied to predict the
dynamics of any magnetic soliton responding to a current
through the Zhang-Li torque.

Accordingly, in all such systems, topological solitons with
high symmetry have velocities lying on a circle, while topo-
logically trivial solitons all have the same velocity V0. The
theory developed here predicts similar properties for low-
symmetry solitons in other magnetic systems. In particular,
when the underlying Hamiltonian is degenerate with respect
to rotations, we expect that spatially rotating low-symmetry
solitons generates circles in the velocity plane, similar to those
presented here for low-symmetry skyrmions in an isotropic
chiral magnet. The size of these circles will be proportional to
the difference in eigenvalues of the dissipation tensor, which
is a measure of the soliton’s elongation. Generally, stable
configurations do not have strongly elongated shapes, so that
their velocities lie close to the big circle (11). Therefore, we
expect the velocity distribution to have the ringlike shape
found here for most materials. Finally, we note that in the
case of magnetic bubbles, three-dimensionality is crucial, and
therefore, the theory proposed here may not cover cases where
the magnetization is strongly inhomogeneous throughout the
film thickness.
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