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1 Abstract 

1.1 English 

Introduction. In the years 2020 and 2021, the Covid-19 pandemic and the associated 

restrictions have increased the demand for data collection that does not require the 

physical presence of participants at the study center. Instead, a measurement from 

home is preferred (e.g., through wearables, portable computer systems). However, 

no standard methods for measurements at home are currently available in gait and 

balance analysis. Since smartphones include accelerometers and gyroscope sensors 

by default and are widely available, we used smartphones as location-independent 

measurement devices for data collection (JTrack Social) and compared them with 

two standard methods of gait analysis (zebris force plates and Xsens sensor system). 

Participants and Methods. 25 healthy subjects (13 female, 44.1±18.4y, in a range of 

20 to 71 years), participated in two measurements in the gait laboratory, and 

completed gait and balance training at home during the three-week interim period. 

Gait parameters and questions about general well-being and self-efficacy were 

collected and compared between the two measurement time points. Results. No 

effect of training on general well-being and self-efficacy was found. However, there 

were improvements in parameters of normal gait, backward gait and tandem gait, as 

well as in the narrow stance, tandem stance and single leg stance for individual 

systems. No improvement was found for narrow stance with eyes closed. Parameters 

of the force plate and the sensor system were moderately to strongly correlated, 

while correlation with the smartphone app data were only weak to moderate. 

Discussion. Improvements in gait and balance variables suggest positive effects of 

training. However, to confirm this effect, a more intense training program would be 

desirable for the future, as well as adjustments in the smartphone data evaluation to 

strive for a better agreement between the smartphone data and the data of the two 

standard gait analysis systems.  

1.2 German 

Einleitung. In den Jahren 2020 und 2021 ist durch die Covid-19 Pandemie und die 

damit einhergehenden Beschränkungen das Bedürfnis nach Erhebungsmethoden für 

Studien und klinische Untersuchungen, die keine Präsenz der Proband:innen am 

durchführenden Studienzentrum erfordern und stattdessen ortsungebunden z.B. 

auch von zu Hause aus erfolgen können (z.B. durch Wearables, tragbare 

Computersysteme), gestiegen. Diesbezüglich sind jedoch aktuell keine 

Standardmethoden in der Gang- und Balanceanalyse vorhanden. Da Smartphones 

standardmäßig Beschleunigungs- und Gyroskopsensoren enthalten und in der 

Bevölkerung weit verbreitet sind, sollten im Rahmen der vorliegenden Studie 

Messungen mit dem Smartphone als ortsungebundene Erhebungsmethode für zu 

Hause mit zwei Standardmethoden der Ganganalyse verglichen werden 

(Kraftmessplatten und Sensor-Systeme). Teilnehmer und Methodik. 25 gesunde 

Probanden (13 Frauen, 44,1±18,4 J., Altersspannweite von 20 bis 71 Jahren) 
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nahmen an zwei Messungen im Ganglabor teil, und absolvierten in den drei Wochen 

zwischen beiden Messungen ein Gang- und Balancetraining zu Hause. 

Gangparameter und Fragen zum allgemeinen Wohlbefinden und der 

Selbstwirksamkeit wurden erhoben und zwischen den beiden Messzeitpunkten 

verglichen. Ergebnisse. Es konnte kein Einfluss des Trainings auf das allgemeine 

Wohlbefinden und die Selbstwirksamkeit festgestellt werden. Jedoch gab es 

systemspezifische Verbesserungen im normalen Gang, Rückwärtsgang und 

Tandemgang und im engen Stand, Tandemstand und Einbeinstand. Beim engen 

Stand mit geschlossenen Augen konnte keine Verbesserung festgestellt werden. 

Während die Daten der Kraftmessplatten und des Sensor-Systems moderat bis stark 

korrelierten, zeigten die Daten der Smartphone App schwache bis moderate 

Korrelationen. Diskussion. Verbesserungen in den Gang- und Balancevariablen 

deuten auf positiven Auswirkungen des Trainings hin. Um diesen Effekt zu 

bestätigen, wäre für die Zukunft zum einen ein intensiveres Trainingsprogramm 

empfehlenswert und zum anderen Anpassungen bei der Datenauswertung, um eine 

bessere Übereinstimmung zwischen den Smartphone-Daten und den Daten der 

beiden Standard Ganganalyse-Systeme zu erreichen. 

2 Introduction 

Due to the Covid-19 pandemic and the related regulations, like quarantine and social 

restrictions, there is an increasing demand for settings facilitating the conduction of 

studies and clinical investigations independent of the physical presence of the 

respective participants or patients. This could be achieved, for example, by enabling 

study participation in a home-based setting, e.g. by using wearables as measurement 

devices for assessing gait and balance. However, these approaches have been 

applied only recently in the field of motion analyses (Winfried Ilg et al., 2020, Shah et 

al., 2021) and are not yet part of the standard tools of measuring gait and balance. 

One wearable device that most persons have at home is a smartphone. Due to its 

broad availability and the convenient option to implement applications, it represents a 

hands-on tool for measuring gait and balance in home-based settings.  

In the current study, a smartphone was used to measure gait and balance in 

combination with two common gait analysis systems requiring a laboratory 

environment: a zebris force plate and an Xsens motion capturing system with inertial 

sensors. On the smartphone two new applications (“JuTrack EMA” and “JTrack 

Social”) have been installed and used for data collection. Both applications were 

developed at the Research Centre Jülich (Far et al., 2021). JuTrack EMA is used for 

custom-made questionnaires, so that common clinical questionnaires can be easily 

implemented into the application. JTrack Social is used for measuring gait with 

accelerometers and gyrometers, which are routinely embedded in the hardware of 

each smartphone and allow measuring acceleration and rotation. The use of these 

two applications should facilitate ease of use, maximize compliance, and minimize 

the time required to participate in the study. This way of measuring gait and balance 
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was linked to a three-week video-based intervention, which was also performed at 

home and included twelve gait and balance training sessions of 20 minutes each.  

Ideally, this concept can be used in the future for location-independent measurement 

of gait and balance in participants or patients in a scientific-clinical environment. In 

combination with video-based training protocols, gait analysis systems optimized for 

the use at home could facilitate training and testing for e.g. immobile participants, for 

the elderly or for patients with movement disorders or affective disorders. This is 

especially important in the light of the current Covid-19 pandemic, which promotes 

immobility for a variety of reasons and impedes the training that was previously 

performed in physical presence at various places like physiotherapy practices, fitness 

centers or in (rehabilitation) hospitals. The present study was a feasibility study of a 

combined assessment and training protocol for gait and balance in healthy subjects. 

The following chapter describes gait and balance characteristics, as well as 

established and also more recent methods of gait analysis. Furthermore, training 

methods to improve gait and balance are presented and discussed, and the research 

objectives of this study are stated.  

2.1 Physiological Basis of Gait and Balance 

Gait as the most basic human way of locomotion can be described in several ways. 

In a biomechanical kind of view, human gait is split up into several phases referred to 

as “step” or “stride”. One stride begins with the initial contact of one foot and ends 

with the initial contact of the same foot (as shown in Fig. 1, blue leg), while a step 

begins with the initial contact of one foot and ends with the initial contact of the other 

foot. Two steps therefore correspond to one stride.  

 

Fig. 1: Visual description of one gait cycle (from: Noraxon MyoPressure Bilateral Gait Report) 

During a stride, the leg is in contact with the ground for about two thirds of the stride, 

and swings during the other third of the stride – these two phases are called stance 

period and swing period. During these periods, several positions can be defined and 



2 Introduction  2.1 Physiological Basis of Gait and Balance 

6 

used as markers. The three most prominent ones are the Heel Strike, the Mid-Stance 

and the Toe-Off (Suppa et al., 2020). The most commonly used gait parameters in 

studies include e.g. stride time (duration of one stride), velocity (mean speed of 

movement over a defined distance), step width (how far the two feet are apart) and 

cadence (how many steps are performed within one second). Other variables are 

often used in addition, but they vary from study to study (e.g. foot rotation, pressure 

or force values, gait variability, …). The duration of a gait cycle usually remains 

similar in a person over time (Day & Lord, 2018). In the following table, reference 

values from two studies with large sample sizes are shown to get a general idea of 

the range of values. Younger adults usually show a slightly better gait performance 

compared older adults (e.g. longer step length, higher velocity, Kimura et al., 2007). 

Variables Asian Men Asian Women Older Men Older Women 

Stride time (s) 1.08 1.04 1.11 1.04 

Velocity (m/s) 1.06±0.20 1.06±0.19 1.32±0.20 1.27±0.22 

Step width (cm) 10.74±3.11 9.37±2.68 9.8±2.5 8.3±2.4 

Cadence (steps/s) 1.85±0.17 1.92±0.18 1.78±0.14 1.91±0.18 

Tab. 1: Reference values for gait variables in male (n=221) and female (n=286) South East Asian 

adults (mean age 64/60.5 years, age range 21 to ≥81 years, Lau et al., 2020) and in male 

(n = 705) and female (n = 759) older adults (mean age 73±2.3 years, age range 69 to 80 years, 

Moe-Nilssen & Helbostad, 2020). Units of the variables were adapted to match units in our 

study. Step time was calculated from step length and velocity; therefore, no standard deviation 

is indicated 

Various structures of the central nervous system play a crucial role in gait, including 

the cerebral cortex, thalamus, brainstem structures, basal ganglia and cerebellum 

(Lewis & Shine, 2016). Among the brainstem structures we find, for example, the 

central pattern generators (CPG). These neuronal networks are responsible for 

continuous movements and therefore also for normal gait, as gait is a cyclic and half-

automatic movement. These continuous movements do not require continuous 

activation by descending neurons of the central nervous system after they have been 

properly activated for the initial step (O'Shea & Weltecke, 2008) and therefore make 

gait special among other movements. While normal gait is largely automated, other 

types of gait (e.g. tandem or backward gait) usually acquire additional cognitive 

processing.  

Balance or posture is the ability of keeping the body in the desired position under 

varying conditions or environments. The balance performance mainly depends on the 

cerebellum (compensating errors in the execution of movements), the inner ear 

(detecting movement directions), sensory information from the environment (vision, 

somatosensation, …) and muscle movements to maintain or to correct a specific 

position. To prevent falls, postural instability must be identified and corrected.  

Gait and balance are impaired in several (neurological) diseases and this can lead to 

considerable constraints in daily life (e.g. freezing of gait in PD, insecure gait in 

ataxias). Therefore, the assessment and recognition of these impairments is 
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important in the clinical practice. In the following part, techniques to analyze gait and 

balance are presented. 

2.2 Analysis of Gait and Balance 

2.2.1 Gold Standard of Objective Gait and Balance Analysis 

Observation and description of gait and balance is an easy tool to detect 

abnormalities in gait and motor performance in people. Analysis of gait and balance 

begins with very simple methods such as observation and video analysis, which have 

the advantage of being time and cost efficient. These methods are sufficient to detect 

abnormal patterns and to subjectively describe gait or balance so that they can be 

used in clinical routine. However, in more scientific settings, technical devices are 

preferred to quantify gait or balance and to make the analyses more objective. This 

can be done in a variety of ways, but among the most commonly used instruments 

for gait and balance analysis are force plates (pressure-sensitive walkways), body-

worn sensor systems (inertial measurement units – IMUs) and video motion capturing 

systems (Petraglia et al., 2019).  

In particular in comparison with data collected from healthy participants, all these 

systems allow to detect abnormal or altered gait patterns in various disorders like 

Parkinson’s disease (PD, Ellis et al., 2015), Multiple Sclerosis (MS) or Ataxias 

(Schmitz-Hübsch et al., 2016). For example, analyses on a force plate (GAITRite™) 

showed that PD patients had a longer step duration, a shorter step length and 

greater variability in both, compared to healthy controls (Ellis et al., 2015) and 

analyses with both a force plate (GAITRite™) and a body-worn sensor system 

(Mobility Lab™) showed reduced stride length and velocity in ataxia patients (n=12, 3 

female, mean age 53, Schmitz-Hübsch et al., 2016). Also, Patterson et al. (2012) 

showed an association between age and gait velocity in 81 older individuals (43 

female, mean age 64.2±22.4 years) in a gait analysis on a force plate (GAITRite™), 

namely that mean velocity decreased with increasing age, while step length and step 

time remained equal. The named gait analysis systems are also able to detect 

performance changes after interventions, for example shown in Conradsson et al. 

(2015), who assessed gait on a force plate (GAITRite™) before and after a ten-week 

balance training in PD patients. Participants in the training group (n=47, 19 female, 

mean age 72.9±6.0 years) showed improved gait velocity and step length in normal 

gait compared to the control group (n=44, 22 female, mean age 73.6±5.3 years). In a 

second task, normal gait was combined with a cognitive task, but no improvements 

were observed after the balance training. Likewise measured with a GAITRite™ 

walkway, Giardini et al. (2018) showed that two forms of physical exercise training 

(balance exercises and mobile platform training) improved gait speed in patients with 

PD. Only the intervention with the balance exercises, however, also led to 

improvements in cadence and step length.  

For balance on the other hand, most studies use center of mass or center of pressure 

data to determine area of postural sway, path length or mean velocity (Nusseck & 
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Spahn, 2020, Wan et al., 2021). Higher sway areas and sway velocities can for 

example be found in young children (Pomarino et al., 2013). In this study, four age 

groups (2 to 6 years, n=92; 7 to 10 years, n=72; 11 to 20 years, n=93; and 21 to 69 

years, n=174) were examined for normal stance on a force plate (zebris FDM-s). The 

results showed that sway areas and velocities decreased from the youngest to the 

oldest age group. Although there were not enough participants with older ages to 

define an older age group, the authors suspected that this effect reverses after a 

certain age is reached (i.e. above 50 or 60 years). Morenilla et al. (2020) also found 

altered sway areas and velocities in PD patients (n=25, 10 female, mean age 

57.6±11.5) compared to control (n=20, 10 female, mean age 59.1±13.3), when 

examining normal stance on a force plate (Kistler 9286BA). They found a significant 

increase in total sway area and in mean anteroposterior and mediolateral 

displacement for PD patients. Moreover, R. Sun et al. (2018) reported that both their 

new inertial body-worn sensor (BioStamp) and a force plate (Bertec) were able to 

discriminate between subjects with severe MS and healthy control. However, the 

force plate was also able to distinguish between subjects with mild MS and healthy 

control, as well as between subjects with mild and severe MS, while the inertial 

sensor was not. Sankarpandi et al. (2017) investigated feasibility of a wearable 

inertial sensor system (Opal) and showed good within-session and between-session 

reliability. Additionally, the sway distance measured with the sensor system had the 

ability to distinguish between fallers and non-fallers. Another study which measured 

balance with a force plate showed that this measurement tool is able to detect 

changes in performance after training interventions: Improvements in the sway 

distance (measured on a zebris force plate) were found for patients with chronic 

stroke (n=13, 5 female, mean age 57.3±10.5 years), after they participated in a virtual 

reality reflection therapy (In et al., 2016). The control group did not show any 

significant improvements in balance performance.  

In summary, gold standard gait and balance analysis systems are able to detect 

differences in gait and balance performance between healthy controls and different 

age groups or diseases; can distinguish between severities of diseases and can 

detect shifts in performance over time.  

2.2.2 Smartphone-based Gait and Balance Analysis 

In recent years several studies have been published that analyze gait with 

accelerometers in smartphones or similar electronic devices (e.g. iPod touch, Ellis, 

2015). These devices include accelerometers and gyroscopes as standard and can 

be used to determine various gait variables. This has the added advantage that the 

measurements are closer to real-world activity and thus more likely represent the gait 

pattern of the participant in daily life. Yamada et al. (2012), for example, used a Sony 

Ericsson smartphone, attached to the back at the height of L3 with a semi-elastic 

belt, to measure gait. They found lower walking speed, lower gait balance and higher 

gait variability in patients with rheumatism (n=39, 35 female, mean age 65.9±10y) 

and concluded that this method is acceptable for gait assessment and can describe 

the patients’ disease activity. They therefore suggested that smartphone gait analysis 
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could be used as a standard method in the future. Steins et al. (2014) draw similar 

conclusions for measuring gait with an iPod Touch, compared to an Xsens sensor 

(gold standard for acceleration) and an optical motion capture system (gold standard 

for position) in young adults (mean age 26y): The smart device showed reliable 

temporal gait outcomes (e.g. cadence, step time, walking speed). However, only 

moderate agreement with the other two systems was found. Ellis et al. (2015) 

investigated gait variability in PD patients (n=12, 5 female, mean age 65.0±8.4 years) 

compared to healthy controls (n=12, 4 female, mean age 63.1±7.8 years) with an 

iPod touch and a force plate (GAITRite™). They found altered gait parameters in 

both gait analysis systems when walking with rhythmic auditory cueing compared to 

normal gait and when comparing PD patients to healthy controls. Interestingly, the 

authors in general found higher values for the iPod comparted to the force plate. 

Furthermore, Marano et al. (2021) were able to discriminate between fallers and non-

fallers in PD patients during lockdown, when using a smartphone application to 

measure motor tasks, including the 3-m timed-up-and-go test. Out of 15 outcome 

variables, two were able to discriminate between fallers and non-fallers: The stand-up 

time and the mediolateral sway in the 3-m timed-up-and-go test. 

The applications used in these studies were only used for a specific motor tasks (e.g. 

normal gait) and are of limited use for other research questions or clinical 

investigations.  

2.2.3 Digitalization of Clinical Assessment Tools 

In addition to gait analysis, increasing digitization has been observed in many areas 

in recent years, e.g. clinical tests and training programs. One example is the SARA 

score, a widely used clinical scale for assessing and evaluating ataxia, which 

researchers have adapted so that testing can be easily done at home and help the 

physician or researcher obtain a more objective assessment. Grobe-Einsler et al. 

(2021) presented the “SARA home” application which can be downloaded to any 

tablet or smartphone with a camera and is used to capture day-to-day fluctuations 

e.g. in gait and stance via video. They found that this assessment can partially 

replace traditional assessments, but since tracking is not yet automatic, the time 

required is quite high. Summa et al. (2020) introduced a different approach for the 

same scale: Their “SaraHome” software is connected to a Microsoft Kinect and a 

Leap Motion Controller, which recognize 25 joints and hand gestures. This facilitated 

the collection of results and resulted in high level of interest and participation from 

both the ten participating children with ataxia and their parents. Initially, however, a 

considerable amount of effort is required to train both personnel and parents for the 

use of SaraHome and to create the right set-up for each task. In general, participants 

showed great interest and satisfaction with the new techniques, which encourages 

further research in this direction.  

Now that different tools for detecting normal and abnormal gait and balance patterns 

have been described, it remains to be noted that gait and balance performance not 
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only deteriorates with age or certain diseases, but can also be improved by 

systematic training.  

2.3 Training Gait and Balance 

Gait and balance performance decrease with age, with diseases or with less sportive 

activity. At the same time, the performance can be increased with appropriate 

training. Training interventions can differ in terms of where they are carried out, the 

duration of the intervention, the intensity of the training and, last but not least, the 

tasks carried out. The following section goes into more detail about the types of gait 

and balance training used in other studies, the training effects that can be expected, 

and the advantages and disadvantages of home-based training. 

This was shown in several studies. In a study by Perrin et al. (1999), older adults who 

participated in physical activity and exercise showed improved postural control. W. Ilg 

et al. (2009) have shown that four weeks of physical therapy plus independent 

exercise can lead to a reduction in ataxia symptoms (i.e. SARA score) and an 

improvement in balance (i.e. BBS) in patients with degenerative cerebellar ataxia, 

when the training is performed three times per week for one hour. W. Sun et al. 

(2018) also showed that a 16-week intervention of Tai Chi exercises improved 

postural control and Cadore et al. (2013) summarize a general positive effect of 

supervised exercise programms on gait performance, balance performance and the 

reduction of falls. The named studies specifically evaluated supervised training, 

which is the most common form of training and is well accepted in society. However, 

if social or personal restrictions make it impossible to take part in a training in 

presence, other solutions must be found and evaluated in the same manner.  

Ellis et al. (2015) suggested in the outlook of their study about smartphone-based 

gait analysis, to perform a home-based gait training. This is supported by other 

studies, indicating that practicing at home might be even more important than 

hospital-based rehabilitation (Miyai et al., 2012), as continuous exercising has the 

best effects on performance. Therefore, it might be helpful for participants to get in 

the habit of practicing at home and incorporating exercise into their daily routine if 

they want to achieve long-term effects on their health and performance. One way to 

provide training or physical therapy at home is video-based training, either via video 

conferencing or via offline video recording. Possible advantages of video-based 

training include lower healthcare costs, better possibilities of quality control and 

improvement of the content and improved access (e.g. for people with physical 

disabilities). Possible disadvantages are the lack of a personal relationship and 

interaction with the therapist/coach and lower acceptance, especially among the 

older generation (Eriksson et al., 2011). To date, there are few studies that have 

investigated video-based physical therapy after stroke (Redzuan et al., 2012), 

shoulder joint replacement (Eriksson et al., 2011), rotator cuff tears (Türkmen et al., 

2020), cardiopulmonary diseases (Hwang et al., 2015) and knee problems (Kim et 

al., 2016; Bini & Mahajan, 2017). The outcome of these studies were similar 

compared to center-based physical therapy. Eriksson et al. (2011) conducted two 
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months of videoconferencing therapy with older adults after a shoulder joint 

displacement and reported an overall positive experience. Participants experienced 

reduced inconvenience (e.g. travel time and costs) and improved independence and 

motivation to practice. However, in summary, they suggest using these therapy 

devices as an adjunct to traditional physical therapy. He et al. (2020) conclude in 

their review about balance and coordination training in degenerative ataxias, that 

most home-based trainings had positive effects: Although the outcomes were not as 

good as conventional training, they were still better than baseline and showed 

positive effects and long-term improvements. Yet, different time periods and training 

durations have been used in all studies. To the best of our current knowledge, there 

has been no study examining the effects and motivational aspects of video-based 

physical therapy for healthy participants of all ages in relation to gait and balance 

training.  

To achieve the best possible outcome from home-based therapy, compliance plays 

an important role. Compliance can be made measurable by counting repetitions or 

frequencies of exercises or specific tasks, or by reaching certain recommended 

levels. Reasons for lack of compliance include that participants may forget to do their 

exercises, may not want to change their lifestyle, or may be unsure about certain 

aspects of the training or study (Essery et al., 2017). Nevertheless, there are ways to 

increase compliance: Essery et al. (2017) suggest that participants should have a 

positive expectation about of the outcome of the exercise, so the person in charge or 

physiotherapist should take some time to explain what the exercises are good for and 

how they can help. In addition, participants should have the opportunity to ask 

questions, and some may need a reminder to do their exercises. Since social support 

plays an important role as well, it might be helpful to involve family members or 

friends, if possible.  

2.4 Research Question and Aim of the Study 

Various studies have been published in which gait and balance performance was 

investigated either for patients or for older adults before and after a training 

intervention; or for patients or older adults compared to healthy controls. However, 

studies are missing which investigate gait and balance performance of healthy adults 

before and after a home-based training intervention. In this study, healthy adults 

performed twice a test battery of gait and balance tasks in the gait laboratory and 

attended a video-based gait and balance training at home in the three weeks interim 

period. We aimed to  

i. investigate the influence of the training on the gait and balance performance 

and on the individual condition (e.g. self-efficacy, well-being). We 

hypothesized that an improvement in gait and balance performance, as well as 

in the questionnaire scores, would occur between the first and second study 

visit. 
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ii. evaluate the smartphone app JTrack Social as a gait analysis system for 

location-independent measurements in comparison with two different standard 

gait analysis systems (force plate and sensor system). We hypothesized that 

the data obtained from the smartphone provides sufficiently good quality to 

achieve a similar rating of the motor performance as the other two systems. 

iii. compare the sensitivity of all methods in detecting differences between first 

and second study visit. We hypothesized that the systems have different 

profiles for depicting differences.  

3 Methods 

This experimental study included two study visits – at baseline (T1) and at follow-up 

after four weeks (T2). During each visit, gait and balance tasks were measured using 

three different gait analysis systems (force plate, motion capturing and smartphone). 

The two applications JuTrack EMA and JTrack Social were used to answer 

questionnaires and assess gait. A three-weeks intervention on gait and balance was 

conducted at home between the two visits. In addition, participants were asked to 

perform the same gait and balance tasks at home as at T1, measured with the 

smartphone only. This study was designed as a feasibility study to measure gait and 

balance and the effect of an intervention in a home-based setting for healthy 

participants. 

Week Study visit Duration Content Hardware 

0 T1 (gait lab) 60min Questionnaires; 
gait and balance 
tasks 

Force plate (zebris FDM)  

Sensor system (Xsens) 

Smartphone (JTrack Social) 

1-3 At home ca. 10min 1x/week 
(questionnaires),  
ca. 10min 1x/week (gait 
and balance tasks),  
ca. 20min 4x/week 
(training) 

Questionnaires; 
gait and balance 
tasks; training Smartphone (JTrack Social 

and JuTrack EMA) 

4 T2 (gait lab) 60min Questionnaires; 
gait and balance 
tasks 

Force plate (zebris FDM)  

Sensor system (Xsens) 

Smartphone (JTrack Social) 

Tab. 2: Time line for the measurements in the study 

3.1 Participants 

The goal was to recruit at least 25 healthy subjects to participate in this study. This 

number is based on a power calculation with the software G*Power 3.1.9.7 (Faul et 

al., 2007), with a one tailed significance of α = 0.05, 1-β = 0.95 and a calculated 

effect size of 0.8 (based on the results of gait speed and cadence in Miyai et al., 

2012). The calculation yielded in a number of at least 19 participants, which was 

increased to 25 to compensate for possible drop-outs. Participation in the study was 
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voluntary and could be terminated at any time. Written informed consent was 

obtained from all participants. The study was approved by the Ethics Committee of 

the Heinrich-Heine University in Düsseldorf (Germany) in April 2021.  

Inclusion criteria for participants were age between 18 and 75 years, independent 

and safe gait without a gait aid and availability of an Android-based smartphone with 

internet access for the duration of the study. Participants should be able to walk a 

clear distance of about four meters indoors or outdoors without being obstructed 

(e.g., no need to go around corners, stable ground). Exclusion criteria comprised joint 

disorders (arthrosis, endoprostheses) or neurological, muscular or other medical 

disorders that may affect gait, falls within the past year or implanted electronical 

devices (e.g. pacemaker, deep brain stimulation).  

3.2 Gait Analysis Systems 

The three gait analysis systems used were  

a) the zebris FDM force plate (4.24m, zebris Medical GmbH, Isny, Germany, 

https://www.zebris.de/medizin/standanalyse-abrollanalyse-und-ganganalyse-

fuer-die-praxis) with the Noraxon® myoPressure software (Noraxon U.S.A., 

Inc., Arizona, USA, https://www.noraxon.com/our-products/myopressure/),  

b) the Xsens MVN Awinda system and software (Xsens Technologies B.V., 

Enschede, Netherlands, https://www.xsens.com/products/mvn-analyze), and  

c) individual smartphones of the participants with the app “JTrack Social” 

installed (Biomarker Development , INM-7, Research Centre Jülich, 

https://play.google.com/store/apps/details?id=inm7.JTrack.JTrack_Social&gl=DE).  

An additional app, the JuTrack EMA app (Biomarker Development, INM-7, Research 

Centre Jülich, https://play.google.com/store/apps/details?id=inm7.Jutrack.ema&gl=DE), 

was used for the retrieval of questionnaires.  

In the following, the three different tools will be described briefly. 

3.2.1 Force Plate – Zebris FDM and MyoPressure 

The zebris FDM is a pressure distribution plate developed for gait analysis. Two 

FDM2 platforms were combined to achieve a gait track of about 4 meters (4.24m with 

a sensor area of 4.06m). The zebris FDM uses capacitive pressure sensors to 

capture the pressure distribution in gait and stance. There were also two cameras 

connected to the system that recorded a video synchronously with the data 

recording, which can be used for verification. The myoPressure™ software uses the 

force and pressure data to create a gait report with pressure prints, center of 

pressure (COP) parameters, as well as force and duration statistics. This includes for 

example step time, stride time, cadence, step length, step width, velocity and 

distribution of gait phases.  

The zebris FDM platform is considered as one of the gold standards in gait analyses 

(e.g. Braun et al., 2015) and is used for a broad variety of gait analyses. For 

https://www.zebris.de/medizin/standanalyse-abrollanalyse-und-ganganalyse-fuer-die-praxis
https://www.zebris.de/medizin/standanalyse-abrollanalyse-und-ganganalyse-fuer-die-praxis
https://www.noraxon.com/our-products/myopressure/
https://www.xsens.com/products/mvn-analyze
https://play.google.com/store/apps/details?id=inm7.JTrack.JTrack_Social&gl=DE
https://play.google.com/store/apps/details?id=inm7.Jutrack.ema&gl=DE
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example, Navratilova et al. (2020) tested weather the gait pattern of PD patients 

changed after deep brain stimulation. Gimunová et al. (2021) studied forward and 

backward gait in men with and without intellectual disabilities and Suciu et al. (2016) 

analyzed the effect of a rehabilitation program after ankle surgery.  

3.2.2 Sensor System – Xsens MVN 

The hardware of the sensor system, the MVN Awinda system, consists of 17 wireless 

motion trackers (sensors) attached to the body with body straps (feet, lower and 

upper legs, pelvis, sternum, shoulders, upper arms, forearms, hands, head, Schepers 

et al., 2018). The sensors record angular velocity, acceleration, atmospheric pressure 

and the earth magnetic field with a frequency of 60 Hz and send this data 

immediately and wirelessly to the Awinda Station, connected to a computer. 

The software MVN Analyze Pro (V2020.2) 

was used for live inspection and recording 

of data. Starting a new session requires 

entering the subject’s body dimensions and 

calibration. Starting from a neutral position, 

participants were asked to walk forward, 

turn around and return to the starting 

position. The recommended distance of five 

to ten meters for this purpose was fulfilled in 

the laboratory environment of this study. 

This calibration process was repeated until 

the software indicated the calibration as 

“good”. The avatar then appeared on the 

computer screen and was visually inspected 

while the participant walked back and forth 

for a while. If the participants’ gait matched 

the avatars’ gait and the movements looked 

normal (e.g. no spinning or wiggling body 

segments), the system was declared ready 

for analysis. 

 

According to the product information and studies conducted by the manufacturer 

itself, the Xsens system has a highly accurate time synchronization and is therefore 

very suitable for measuring human movement (Schepers et al., 2018). The Xsens 

system is also a common reference system in gait analysis (Khurelbaatar et al., 

2015) and produces high accuracy data (Ferrari et al., 2010). Al-Amri et al. (2018) 

examined 26 healthy participants during functional activities (e.g. walking, jumping) 

and found high reliability and validity, especially for the lower limbs. 

For the evaluation in this study only a subset of the available sensors (feet, pelvis) 

was used. These sensors are commonly used for the analysis of gait variables 

(Steins et al., 2014, Shah et al., 2021). A script was used for the extraction of data, 

Fig. 2: Screenshot of an MVN avatar in a 

single leg stance 
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which can be found in the supplementary material (see section “7.2 Data extraction 

Xsens”). All data were visually checked for errors and for plausibility. 

3.2.3 Smartphone-based Data 

On the smartphone (with an Android operation system), the application JTrack Social 

had to be downloaded to the device from Google Play Store. The participation in the 

study was started by scanning a QR-code with the device’s camera, which 

automatically assigned the participant to random study ID. Participants started the 

measurement manually in the smartphone app (e.g. typing in “normal gait”) and put 

the smartphone into their fanny pack during the performance of the tasks. The 

movement for synchronization was performed before beginning the task and after 

finishing the task, respectively. After that, the task was stopped manually by clicking 

on the stop button in the app. During the measurement time, the acceleration and 

gyroscope data of the smartphone were recorded. A gyroscope is a sensor that 

measures rotation and thus orientation of a device. The outcome of this sensor is 

angular velocity. As soon as a connection to the internet was available, the 

acceleration and gyroscope data of the recorded task was sent to the server 

automatically for data collection.  

The JTrack platform was introduced for remote monitoring in daily life in Far et al. 

(2021) and has among other indications the function to collect high-frequency raw 

data from the accelerometer and gyroscope for motion analysis. The app was 

optimized to deal with different operating systems and pays attention on data privacy 

and security. As the app is relatively new, studies will follow to prove its quality.  

3.3 Study Tasks 

3.3.1 Gait and Balance Tasks in the Laboratory 

For every gait and balance task, the supervisor first started the Xsens software and 

the Noraxon myoPressure software for recording. The participant had to start the 

JTrack Social app by opening it and typing in the name of the task to be performed 

next (e.g. “normal gait”). The time for each task was set to 90s to ensure that the task 

would be completed on time. Once both participant and the supervisor were ready, 

the participant pressed the start button and placed the smartphone into a fanny pack 

provided for the duration of the study. As soon as all devices started recording, the 

participant first performed a synchronization movement in order to have a start and 

end mark in all measurement devices. To do so, they lifted their heels into a toe 

stand and then dropped back down onto their heels. This resulted in a high 

acceleration in the sensor system and in the smartphone accelerometer, and a high 

force on the force plate at the same time.  
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Fig. 3: Example screenshots of the JTrack Social app, i.e. measuring normal gait 

The first of the tasks in the laboratory was a normal gait over a distance of 4.24m 

(length of the two zebris force plates). Participants should walk briskly and safely 

across the force plate, then turn around behind the plate and walk back to the 

starting position. The task was repeated five times, resulting in a total walking 

distance of about 40m (10 lanes). In the second task, participants walked the same 

distance backwards. The task was repeated three times, resulting in a total distance 

of about 24m (6 lanes). The third task was a tandem gait. The participants walked in 

a straight (imaginary) line by placing one foot in front of the other, placing the heel of 

one foot about a hand's width in front of the toes of the previous foot. At the end of 

the plate, they turned around and walked back to the starting position. This was 

repeated twice, resulting in a total distance of about 16m (4 lanes). The fourth task 

was a stance task. The participant placed his/her feet close together and tried to 

keep the balance as long as possible. The time the participant could remain standing 

without leaving his/her position or holding up (maximum of 30s) was measured. The 

fifth task was a tandem stance: The participant placed the heel of one foot in front of 

the toes of the other foot in a line and tried to maintain balance. The participant could 

choose which foot to place to the front and which one to the back. The time the 

participant could remain standing without leaving his/her position or holding up 

(maximum of 30s) was measured. The sixth task was similar to the fourth (close 

stance) with the added difficulty of closing the eyes. Again, the participant tried to 

maintain balance as good as possible, without leaving his/her position or holding up 

(maximum of 30s). The seventh and final task was a single leg stance, in which the 

participant tried to maintain balance while standing on one leg. The time the 
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participant could remain standing without leaving his/her position or holding up 

(maximum of 30s) was measured. 

During all tasks and depending on the subjective opinion of the participant, the 

supervisor closely observed the gait and balance tasks in order to support him/her in 

case of a stumble or to prevent a fall if necessary. 

Tab. 3: Overview of gait and balance tasks 

3.3.2 Questionnaires in the Laboratory 

Age, gender, profession and years of education were retrieved in a demographical 

questionnaire in the laboratory. To assess depression and anxiety, the German 

versions of the depression module of the patient health questionnaire (PHQ-9, 

Kroenke et al., 2001, German version: Löwe et al., 2002) and the hospital anxiety 

and depression scale (Zigmond & Snaith, 1983; German version: HADS-D, 

Hermann-Lingen et al., 2011) were used. Additionally, general habitual well-being 

(FAHW, Wydra, 2014) and the self-efficacy, optimism and pessimism (SWOP-K9, 

Scholler et al., 1999) were assessed. To assess self-efficacy in relation to falls, the 

(modified) German version of the Activities-Specific Balance Confidence scale was 

used (ABC-D, Schott, 2008).  

The subscores “PHQ_stress” and “PHQ_depression” were selected from the PHQ-9 

questionnaire. While the depression variable was used as an exclusion criterion, the 

stress variable ranged from 0 to 20 and served as a covariate to describe the 

population. The HADS-D scores also served as exclusion criteria. The anxiety score 

had a cut-off value of >10 points and the depression score of >8 points. The FAHW 

score was calculated by subtracting the score of the discomfort questions from the 

score of the well-being questions. A total score of 38 to 50 or 35 to 47 (men and 

women, respectively) is defined as “average” by the developers of the questionnaire. 

Additionally, the score contains a row of smileys, ranging from a happy face to a sad 

face. This was included in the evaluation by assigning a 1 to the happiest smiley and 

a 7 to the saddest smiley. The SWOP-K9 questionnaire contains items on self-

efficacy (SWOP-SE), optimism (SWOP-OP) and pessimism (SWOP-PS), with scores 

ranging from 5 to 20, 2 to 8 and 2 to 8, respectively. For the ABC-D questionnaire the 

scale was adapted to a 4-point response scale (not confident at all, somewhat less 

Task Content 

Normal gait (NG) 10 x 4.24m normal (forward) gait  

Backward gait (BG) 6 x 4.24m backward gait  

Tandem gait (TG) 4 x 4.24m gait in tandem gait 

Narrow stance (NS) Balancing in a narrow stance 

Tandem stance (TS) Balancing in a tandem stance 

Narrow stance with eyes closed (NSEc) Balancing in a narrow stance with eyes closed 

Single leg stance (SS) Balancing on one leg 
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confident, somewhat confident, absolutely confident) and a score between 

16 (maximum confidence) and 64 (minimum confidence) could be achieved.  

3.3.3 Gait and Balance Tasks at Home 

Concerning the setting of a gait study, Winfried Ilg et al. (2020) have shown that the 

variability of gait measurements is increased during unconstrained gait (e.g. 

outdoors, on a walk) compared to gait in the laboratory. In our study, we used two 

conditions for gait measurement: on the one hand, a supervised situation in the 

laboratory and, on the other hand, a non-supervised, home-based situation, but 

under conditions as similar as possible to those in the laboratory. This was attempted 

by defining the distance that the participants had to walk using a string that was the 

same length as the force plates in the laboratory (4.24m).  

The same tasks as in section “3.3.1 Gait and Balance Tasks in the Laboratory” were 

repeated weekly at home. For this purpose, the participants received a list with all 

tasks in the above-mentioned order and with a task description. The tasks were 

measured using only the smartphone. Participants started the measurement 

manually in the JTrack Social app and put the smartphone into the fanny pack while 

performing the tasks. The movement for synchronization was performed before 

beginning the task and after finishing the task, respectively. After that, the task was 

stopped manually by clicking on the stop button in the app. In this thesis, however, 

only the data from the laboratory environment was evaluated, since too many values 

were missing in the data from the home-based environment. 

3.3.4 Questionnaires at Home 

Some of the questionnaires obtained in the gait lab (see section “3.3.2 

Questionnaires in the Laboratory”) were retrieved weekly via the app JuTrack EMA. 

These were the SWOP-K9 and the ABC-D questionnaire, and a short version of the 

FAHW questionnaire (FAHW-12), containing 12 of the 42 items of the original version 

tested at T1 and T2. The questionnaires appeared at the smartphone every 7 days, 

i.e., after the completion of each week of the intervention.  
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Fig. 4: Example screenshots of the JuTrack EMA app from the ABC-D questionnaire (left), the SWOP-

K9 questionnaire (middle) and the FAHW-12 questionnaire (right) 

3.3.5 Training at Home 

Gait and balance training was performed four times per week for 20 minutes in the 

form of videos, that were uploaded to a server. The videos were produced by a 

physical therapy practice (PhysioStützpunkt, Köln, Germany) and show a 

physiotherapist, explaining and demonstrating various tasks to improve gait and 

balance. This included strength training, coordination training, stability training and 

mobility. The twelve videos progressed from simple to more demanding tasks and 

also included ideas on how to make certain tasks easier or more challenging if 

needed. Videos could be paused or repeated at any time, but participants were 

instructed to perform each training session only once until their second study visit 

was completed. Afterwards, access to the videos was maintained for a few weeks so 

that they could repeat some units and benefit from the training. The training protocol 

is given in detail in the supplementary material (see “7.1 Training Protocol”). 

3.4 Statistics 

From a set of variables that have been extracted for the gait tasks in each gait 

analysis system, three were selected that were consistently available across all 

systems: Gait velocity (average velocity across all straight distances covered in the 

task, measured in meters per second), stride time (average duration of one stride or 

two consecutive steps in seconds) and cadence (average number of steps that are 

performed within one second). Additionally, step width was extracted from the 

myoPressure™ gait report and from the sensor data, as this is an important variable 

to detect abnormal gait patterns (e.g. broadened base of support in cerebellar 

ataxias, see Nonnekes et al., 2018). However, the step width cannot be estimated – 

or only imprecisely –from the acceleration data of the smartphone and was therefore 
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not extracted from JuTrack Social. For the balance tasks, the center of mass (COM) 

sway area (area of an ellipse enclosing all data points in x- and y-direction) and the 

velocity of the COM (average distance in millimeters that the participant travelled per 

second) were chosen. These two variables have shown good reliability in other 

studies (e.g. Terra et al., 2020, Kouvelioti et al., 2015) and are commonly used for 

examining balance performance (Wan et al., 2021, Pomarino et al., 2013, Nusseck & 

Spahn, 2020). Both variables were available for all three gait analysis systems. 

 Output variable Description 

Gait Stride time Time to complete one stride (two steps) in seconds 

Cadence Number of steps per second 

Velocity Speed of movement in meters per second 

Step width* Lateral distance of left and right foot at one step 

Balance COM ellipse area Ellipse, enclosing 95% of all data points (or all, in the sensor 
system) during a stance task in square millimeter (mediolateral 
and anteroposterior displacement) 

COM velocity Speed of movement during a stance task in millimeters per 
second (mediolateral and anteroposterior displacement) 

Tab. 4: Overview of gait and balance variables of all gait analysis systems used for statistical analysis. 

* not obtained with the smartphone 

Before performing further tests, the variables were checked for normal distribution 

using quantile-quantile plots (QQ-plots), which should follow a 45-degree line if both 

samples come from the same distribution, and the Kolmogorov-Smirnov statistical 

test, which is very sensitive to small deviations from the normal distribution. For 

testing this assumption, a significance level of α=5% was chosen.  

To analyze changes over time between the questionnaire scores at the first and 

second study visit (T1 and T2), either an ordinary paired-sample t-test was performed 

if the data scores were normally distributed, or a Wilcoxon rank test, if the data were 

not normally distributed. To analyze changes over time of the one variable within one 

gait analysis system, a one-way repeated measures MANOVA (multivariate analysis 

of variance) was performed. If the results were statistically significant (Wilks’ Lambda 

p<0.05), post-hoc tests at a univariate level were performed to detect where the 

differences can be found. Correlations between the questionnaire scores, between 

the individual variables within one gait analysis system, and between variables in all 

gait analysis systems, were calculated with the Pearson correlation coefficient 

(α=5%), if the majority of variables were normally distributed. In this context, a 

correlation between 0 and 0.09 was described as negligible, 0.10 to 0.39 as weak, 

0.40 to 0.69 as moderate, 0.70 to 0.89 as strong and 0.90 to 1.00 as very strong.  

Boxplots of all gait and balance variables were checked and extreme outliers were 

excluded (>3*SD). 

Analyses were performed in line with recommendations of the statistical mentoring of 

the Heinrich-Heine university Düsseldorf.  
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4 Results 

A total of 25 participants with an average age of 44 years (±18.4 years) took part in 

the first study visit (T1, 52% female, 92% right-handed). One participant had missing 

data from the sensor system due to technical problems.  

For the second study visit, there was a drop-out of four participants (injury 

independent of the study (1), technical difficulties (1) and time problems (2)). This led 

to a sample of 21 participants at T2 with an average age of 44.7±19.4 years 

(57% female, 95% right-handed).  

4.1 Demographic Variables and Questionnaire Scores 

QQ-plots showed a normal distribution for all demographic variables and 

questionnaire scores except the ABC-D score at both study visits. This was 

confirmed by a Kolmogorov-Smirnov test, showing that the two ABC-D scores are not 

normally distributed (p<0.0005 for both tests). An overview of all applied 

questionnaires is given in section 3.3.2 “Questionnaires in the Laboratory”. Because 

one participant showed a depressive mood (score 10), all analyses were conducted 

with and without this subject. Since results did not differ greatly, data from this 

participant were not excluded from further analyses.  

 Min. Max. Mean SD 

Age (years) 20 71 44.08 18.369 

Education (years) 10 25 15.20 3.202 

HADS-D Anxiety (score) 0 9 3.32 2.780 

HADS-D Depression (score) 0 10 2.64 2.612 

PHQ Stress (score) 0 8 2.80 2.141 

Tab. 5: Demographic information of all participants (n=25). Education includes school years (e.g. 

German Abitur equals 12 years of education). The HADS-D anxiety score has a cut-off value 

of >10 and the HADS-D depression score has a cut-off value of >8. The PHQ stress score has 

a maximum of 20 points 

To test for differences between the questionnaires obtained at both study visits, a t-

test was performed for all variables except for the ABC-D test. The t-test revealed no 

significant differences for any on the tested variables (p>0.09). For the ABC-D test, a 

Wilcoxon rank test was performed, which also showed no significant differences 

between the two measurement points (p=0.927). 

  



4 Results  4.1 Demographic Variables and Questionnaire Scores 

22 

 T1 T2 

 Min. Max. Mean SD Min. Max. Mean SD 

SWOP-SE (score) 2.0 3.8 3.080 0.49 2.2 4.0 3.229 0.4485 

SWOP-OP (score) 2.0 4.0 3.240 0.631 1.5 4.0 3.119 0.7891 

SWOP-PS (score) 1.0 3.0 1.740 0.614 1.0 3.0 1.667 0.7130 

ABC-D (score) 16 28 17.96 2.574 16 24 17.76 2.343 

FAHW (score) 21 83 59.12 16.821 -5 86 54.55 25.310 

FAHW Smilie (score) 1 3 2.04 0.611 1 4 2.25 0.786 

Tab. 6: Descriptive statistics of the questionnaire scores at the first and second study visit (T1 and T2, 

n=21). SE = self-efficacy (possible range: 5 to 20), OP = optimism (possible range: 2 to 8), 

PS = pessimism (possible range: 2 to 8). Activities-Specific Balance Confidence scale 

(ABC-D, possible range: 16 to 64), general habitual well-being (FAHW, average reference 

values between 35 and 50, smiley score ranging from 1 to 7) Significant differences in mean 

are indicated by bold font. 

The demographic characteristics (age, gender, handedness and years of education) 

did not correlate significantly with each other and with any of the questionnaire 

scores. However, the questionnaire scores had several significant correlations with 

each other, which are shown in Tab. 7. A strong negative correlation was found 

between the general habitual well-being and the depression score (better well-being 

with less depressive mood), while negligible to moderate correlations were found 

between the activities-specific balance confidence scale and the other, more 

psychological, scores.  

  HADS-D 
depression 

PHQ 
stress 

SWOP-
SE 

SWOP-
OP 

ABC-D FAHW FAHW_
smiley 

HADS-D 

anxiety 

Cor 0.608** 0.291 -0.436* -0.295 0.212 -0.676** 0.532** 

Sign. 0.001 0.158 0.029 0.152 0.310 0.000 0.006 

HADS-D 

depression 

Cor.   0.486* -0.348 -0.565** 0.215 -0.848** 0.453* 

Sign.   0.014 0.089 0.003 0.303 0.000 0.023 

PHQ stress Cor.     -0.365 -0.410* 0.543** -0.662** 0.484* 

Sign.     0.072 0.042 0.005 0.000 0.014 

SWOP-SE Cor.       0.313 -0.315 0.425* -0.150 

Sign.       0.128 0.126 0.034 0.473 

SWOP-OP Cor.         0.045 0.541** -0.458* 

Sign.         0.832 0.005 0.021 

FAHW Cor.             -0.596** 

Sign.             0.002 

Tab. 7: Overview of correlation between the questionnaire scores (after Pearson, n=25, *p<0.05, 

**p<0.01). Questionnaires from the first study visit T1 are used. Rows and columns without 

any significant results were removed from the table in order to have a better overview. Cor. = 

correlation after Pearson, Sign. = significance (two-tailed). SE = self-efficacy, OP = optimism. 
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4.2 Gait and Balance Performance 

Among the gait and balance variables, 32 out of 114 gait and balance variables of all 

three systems together did not have a normal distribution according to q-q-plots. 

However, a Kolmogorov-Smirnov test revealed 52 variables that were not normally 

distributed. Since this still affected only the minority of variables, parametric tests 

were chosen for further analysis of all variables. As a control, the correlation plots 

were examined for outliers and Spearman correlations were also calculated. No 

obvious differences were observed. 

Boxplots of all gait and balance variables were checked and extreme outliers were 

excluded (>3*SD). This affected eight values in the force plate data, 14 values in the 

sensor system and 12 values in the smartphone data.  
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Gait Performance 

In Tab. 8, values of all gait variables are displayed before training (T1) and after training (T2) for all three systems. Significant 

differences were found in all variables within normal gait (force plate), in two variables within normal gait and three variables within 

tandem gait (sensor system), and one variable within backward gait (smartphone app). Significant differences within the post-hoc test 

were additionally found for two variables within backward gait (force plate) and one variable within backward gait (sensor system). 
   

T1 T2 p Δ % 
  

  N Min. Max. Mean SD N Min. Max. Mean SD   

F
o

rc
e
 p

la
te

 

N
o
rm

a
l 
g
a

it
 stride time [s] 25 0.97 1.55 1.20 0.13 20 0.91 1.29 1.13 0.10 0.003 -6.15 

Cadence [steps/s] 25 1.30 2.08 1.70 0.17 20 1.55 2.20 1.80 0.18 0.002 +5.89 

Velocity [m/s] 25 0.64 1.28 0.98 0.14 20 0.92 1.42 1.09 0.12 0.002 +11.01 

step width [cm] 25 7 16 11.64 2.60 20 7 15 10.65 2.50 0.002 -8.51 

B
a
c
k
w

a
rd

 g
a
it
 stride time [s] 25 1.04 1.56 1.22 0.13 20 0.94 1.37 1.17 0.12 0.027 -4.01 

Cadence [steps/s] 25 1.32 1.92 1.66 0.16 20 1.47 2.12 1.73 0.18 0.760 +4.24 

Velocity [m/s] 25 0.53 0.86 0.69 0.09 20 0.61 0.92 0.76 0.09 0.028 +9.43 

step width [cm] 25 10 24 18.08 3.19 20 12 24 17.45 3.20 0.886 

 

-3.48 

T
a
n
d
e

m
 g

a
it
 stride time [s] 20 1.19 2.44 1.66 0.31 19 1.00 2.44 1.61 0.35 0.263 -2.93 

Cadence [steps/s] 21 0.68 1.68 1.23 0.24 19 0.85 2.02 1.33 0.26 0.064 +8.59 

Velocity [m/s] 21 0.22 0.72 0.45 0.12 18 0.25 0.83 0.49 0.13 0.080 +7.81 

step width [cm] 21 1 5 2.24 1.04 19 1 4 2.00 0.94 0.414 -10.71 

S
e
n

s
o

r 
s
y

s
te

m
 

N
o
rm

a
l 
g
a

it
 stride time [s] 24 0.94 1.51 1.18 0.13 21 0.93 1.28 1.11 0.10 0.003 -6.36 

Cadence [steps/s] 24 1.32 2.13 1.71 0.18 21 1.56 2.14 1.82 0.17 0.001 +6.42 

Velocity [m/s] 24 0.59 1.27 0.97 0.15 21 0.65 1.39 1.03 0.17 0.071 +6.48 

step width [cm] 24 5.30 15.99 10.60 3.42 21 1.88 16.83 9.27 3.48 0.266 -12.50 
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T1 T2 p Δ % 
  

  N Min. Max. Mean SD N Min. Max. Mean SD   

S
e
n

s
o

r 
s
y

s
te

m
 

B
a
c
k
w

a
rd

 g
a
it
 stride time [s] 24 1.03 1.46 1.21 0.11 21 0.94 1.35 1.16 0.11 0.073 -4.45 

Cadence [steps/s] 24 1.37 1.95 1.66 0.15 21 1.48 2.14 1.74 0.18 0.074 +4.79 

Velocity [m/s] 24 0.31 0.84 0.66 0.12 21 0.58 0.89 0.75 0.10 0.007 +13.91 

step width [cm] 24 6.24 19.67 11.86 3.40 21 2.45 17.88 11.53 3.70 0.676 -2.79 

T
a
n
d
e

m
 g

a
it
 stride time [s] 24 1.17 3.11 1.76 0.42 21 1.00 1.96 1.49 0.23 0.006 -15.33 

Cadence [steps/s] 24 0.64 1.70 1.19 0.25 20 1.02 1.69 1.35 0.18 0.002 +12.72 

Velocity [m/s] 24 0.15 0.98 0.40 0.17 20 0.19 0.80 0.44 0.13 0.044 +10.28 

step width [cm] 22 0.72 5.67 2.44 1.06 21 0.81 7.48 2.84 1.73 0.545 +16.10 

S
m

a
rt

p
h

o
n

e
 

N
o
rm

a
l 
g
a

it
 

stride time [s] 17 1.10 1.51 1.23 0.09 15 1.03 1.50 1.21 0.14 0.423 -1.67 

Cadence [steps/s] 18 1.31 1.83 1.63 0.14 15 1.34 1.95 1.70 0.18 0.157 +4.06 

Velocity [m/s] 18 0.27 0.37 0.32 0.03 15 0.26 0.42 0.33 0.05 0.275 +1.99 

B
a
c
k
w

a
rd

 

g
a
it
 

stride time [s] 19 1.14 1.32 1.22 0.05 11 1.05 1.52 1.20 0.13 0.453 -1.35 

Cadence [steps/s] 19 1.52 1.79 1.65 0.07 11 1.33 1.92 1.69 0.17 0.277 +2.46 

Velocity [m/s] 19 0.22 0.37 0.30 0.04 11 0.27 0.40 0.31 0.04 0.005 +4.15 

T
a
n
d
e

m
 g

a
it
 

stride time [s] 19 1.08 1.57 1.29 0.10 13 1.10 1.46 1.26 0.11 0.561 -2.66 

Cadence [steps/s] 19 1.29 1.78 1.57 0.12 13 1.39 1.87 1.62 0.15 0.885 +2.90 

Velocity [m/s] 19 0.20 0.31 0.23 0.03 13 0.19 0.34 0.26 0.05 0.742 +11.69 

Tab. 8: Differences in mean between the first (T1) and second study visit (T2) for the gait variables of all three gait analysis systems. The percentage change is 

indicated in “Δ %”. Bold font indicates a significant difference in time (T1-T2, p<0.05) and italic font indicates a difference in time in the post-hoc test only 

(p<0.05). Min. = minimum, max. = maximum, SD = standard deviation  
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Fig. 5: Graphical representation of the mean values of stride time and cadence for all three gait analysis systems at T1 and T2 (before and after training). 

Significant differences in time are highlighted by an asterisk. BG = backward gait, NG = normal gait, TG = tandem gait 
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Fig. 6: Graphical representation of the mean values of velocity and step width for all three gait analysis systems at T1 and T2 (before and after training). 

Significant differences in time are highlighted by an asterisk. BG = backward gait, NG = normal gait, TG = tandem gait 

  

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

T1 T2

velocity [m/s]

NG gait plate BG gait plate TG gait plate

NG Xsens BG Xsens TG Xsens

NG JTrack BG JTrack TG JTrack

1.5

3.5

5.5

7.5

9.5

11.5

13.5

15.5

17.5

T1 T2

step width [cm]

NG gait plate BG gait plate TG gait plate

NG Xsens BG Xsens TG Xsens



4 Results 

28 

Balance Performance 

Significant differences between balance variables measured at the first and second study visit were less frequent than between gait 

variables. Significant differences were present for the COM velocity in the tandem stance of the force plate, and for the COM velocity 

in the narrow stance and the COM ellipse area in the single leg stance of the smartphone app. 
   

T1 T2 p Δ % 
  

  N Min. Max. Mean SD N Min. Max. Mean SD   

F
o

rc
e
 p

la
te

 

N
S

 COM ellipse [mm2] 25 206.0 1439.0 719.92 307.54 20 256.0 1826.0 688.30 352.60 0.492 -4.39 

COM velocity [mm/s] 25 9.0 23.0 15.60 4.02 20 8.0 31.0 16.30 5.30 0.744 +4.49 

T
S

 COM ellipse [mm2] 25 336.0 3348.0 1430.44 853.08 19 227.0 2314.0 1075.21 594.77 0.219 -24.83 

COM velocity [mm/s] 24 28.0 107.0 52.33 17.93 20 22.0 135.0 50.15 29.78 0.006 -4.17 

N
S

E
c
 

COM ellipse [mm2] 24 296.0 1622.0 981.33 366.76 20 345.0 1730.0 960.10 400.45 0.630 -2.16 

COM velocity [mm/s] 25 11.0 42.0 27.64 7.48 20 12.0 48.0 25.60 8.52 0.094 -7.38 

S
S

 COM ellipse [mm2] 20 439.0 1255.0 878.05 221.37 20 394.0 2345.0 977.80 447.48 0.807 +11.36 

COM velocity [mm/s] 24 24.0 111.0 53.63 26.48 20 22.0 109.0 47.85 21.84 0.261 -10.78 

S
e
n

s
o

r 
s
y

s
te

m
 

N
S

 COM ellipse [mm2] 24 312.2 3628.9 1521.86 772.73 21 522.4 3527.5 1358.79 727.22 0.263 -10.72 

COM velocity [mm/s] 24 4.76 10.48 6.58 1.53 20 3.7 10.1 6.44 1.48 0.835 -2.13 

T
S

 COM ellipse [mm2] 23 263.6 4095.1 1515.35 948.28 20 376.2 2609.4 1397.48 681.17 0.732 -7.78 

COM velocity [mm/s] 22 5.1 11.6 8.55 1.81 21 4.4 19.3 9.32 3.77 0.732 +9.01 

N
S

E
c
 

COM ellipse [mm2] 23 754.3 3138.0 1730.55 655.97 21 528.7 3467.2 1542.95 829.00 0.201 -10.84 

COM velocity [mm/s] 24 5.47 16.37 8.72 2.41 21 3.9 11.4 7.76 2.03 0.075 -11.01 

S
S

 COM ellipse [mm2] 20 466.0 15835.0 3859.69 3862.79 18 434.8 10074.4 2710.43 2320.89 0.750 -29.78 

COM velocity [mm/s] 21 6.6 28.9 13.07 6.45 20 6.4 21.9 11.85 4.17 0.445 -9.33 
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   T1 

T2 

T1 

T2 

T1 

T2 

T1 

T2 

T1 

T2 

p Δ % 

   N Min. Max. Mean SD N Min. Max. Mean SD   

S
m

a
rt

p
h

o
n

e
 

N
S

 COM ellipse [mm2] 17 119.3 4351.5 1481.48 1216.17 14 49.2 5224.1 1779.94 1594.56 0.824 +20.15 

COM velocity [mm/s] 18 3.2 24.8 16.26 6.16 14 5.9 24.0 15.52 6.33 0.047 -4.55 

T
S

 COM ellipse [mm2] 16 0.6 13516.3 2512.69 3407.80 11 304.9 18644.7 4159.06 5362.40 0.874 +65.52 

COM velocity [mm/s] 17 1.0 24.7 16.97 6.04 13 1.5 41.1 20.30 10.99 0.655 +19.62 

N
S

E
c
 

COM ellipse [mm2] 14 94.7 4406.3 1466.86 1155.15 12 56.7 7299.2 3047.98 2413.53 0.202 +107.79 

COM velocity [mm/s] 16 9.7 24.3 16.92 4.50 12 7.7 24.0 16.93 5.14 0.893 +0.06 

S
S

 COM ellipse [mm2] 14 0.8 3171.3 1841.74 1244.78 11 88.2 3111.2 1252.32 834.00 0.028 -32.00 

COM velocity [mm/s] 16 0.9 32.6 16.86 8.95 12 8.1 22.9 17.78 4.44 0.894 +5.46 

Tab. 9: Differences in mean between the first (T1) and second study visit (T2) for the balance variables of all three gait analysis systems Bold font indicates a 

significant difference in time (T1-T2, p<0.05) and italic font indicates a difference in time in the post-hoc test only (p<0.05). COM = center of mass, min. = 

minimum, max. = maximum, NS = narrow stance, NSEc = narrow stance with eyes closed, SD = standard deviation, SS = single leg stance, TS = tandem 

stance 
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Fig. 7: Graphical overview over the balance variables (center of mass ellipse area and velocity) in all three gait analysis systems at both measurement points (first measurement, 

T1, second measurement, T2). 
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4.2.1 Differences Over Time – Force Plate 

For the normal gait an effect of time was found (p = 0.007). The post-hoc tests 

revealed that there was a significant difference in time for all analyzed variables: 

stride time (p = 0.003), cadence (p = 0.002), velocity (p = 0.002), and step width 

(p = 0.002). For the backward gait, no significant effect of time was found (p = 0.303). 

However, post hoc tests showed a significant difference in two of the variables, that 

is, stride time (p = 0.027) and velocity (p = 0.028). For the tandem gait, no significant 

effect of time was found (p = 0.291).  

For the tandem stance, an effect of time was found (p = 0.014). Post hoc tests 

showed a significant difference for the speed of movement in the tandem stance 

(p = 0.003). Contrary, for the narrow stance, narrow stance with eyes closed and the 

single leg stance, no significant effect of time was found (p = 0.491, p = 0.221 and 

p = 0.259, respectively).  

4.2.2 Differences Over Time – Sensor System 

In contrast to the force plate, no effect of time was found for normal gait (p = 0.164). 

For the backward gait, no significant effect of time was found (p = 0.072). However, 

post hoc tests showed a significant difference in the velocity of backward gait 

(p = 0.007) – similar to the force plate. For the tandem gait no effect of time was 

found (p = 0.077). However, in contrast to the force plate, the post-hoc tests revealed 

a significant difference in time for three out of four variables: For the stride time 

(p = 0.006), the velocity (p = 0.044) and the cadence (p = 0.002). No significant effect 

was found for the step width. 

While the force plate analysis revealed an effect of time for the tandem stance, the 

sensor system analysis did not find a significant effect of time for any of the stance 

tasks (narrow stance, p = 0.213; tandem stance, p = 0.850; narrow stance with eyes 

closed, p = 0.203; single leg stance, p = 0.934). 

4.2.3 Differences Over Time – Smartphone 

For the backward gait a significant effect of time was found (p = 0.021). Post hoc 

tests showed a significant difference in the velocity (p = 0.005), which is similar to 

both other gait analysis systems. In contrast to the other systems, no significant 

effect of time was found for the normal gait (p = 0.164) and similarly to the force plate 

analysis, no significant effect of time was found for the tandem gait (p = 0.378).  

For both the narrow stance and the single leg stance, no effect of time was found 

(p = 0.145 and p = 0.107). However, in contrast to the other gait analysis systems, 

post hoc tests showed a significant difference in the speed of movement for the 

narrow stance (p = 0.047) and in the ellipse area for the single leg stance (p = 0.028). 

As in the sensor system, for neither the tandem stance nor the narrow stance with 

eyes closed there was a significant effect of time (p = 0.769 and p = 0.262, 

respectively). 
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4.2.4 Within-System Correlations 

Correlations are shown within one gait analysis system between the different variables of gait (Tab. 10, Tab. 11, Tab. 12) and stance 

(Tab. 13, Tab. 14, Tab. 15). Correlations were mostly moderate (0.4 to 0.69) to very strong (0.9 to 1), except for the step width. 

Gait – Force Plate 
 

Normal gait T1 

 

Backward gait T1 

 

Tandem gait T1 
 

Cadence Velocity Step width [cm] 

 

Cadence Velocity Step width 

 

Cadence Velocity Step width 

Stride time 

[s] 

Cor. -0.980** -0.746** 0.225  -0.988** -0.372 0.384  -0.968** -0.792** -0.144 

Sig. (2-tailed) 0.000 0.000 0.280 

 

0.000 0.067 0.058 

 

0.000 0.000 0.544 

Cadence 

[steps/s] 

Cor.  0.713** -0.304   0.374 -0.394   0.869** 0.155 

Sig. (2-tailed) 

 

0.000 0.139 

  

0.065 0.051 

  

0.000 0.501 

Velocity 

[m/s] 

Cor.   -0.096    -0.041    0.183 

Sig. (2-tailed) 

  

0.649 

   

0.845 

   

0.428 

 N = 25  N = 25  N = 21 

 
 

Normal gait T2 

 

Backward gait T2 

 

Tandem gait T2 
 

Cadence Velocity Step width [cm] 

 

Cadence Velocity Step width 

 

Cadence Velocity Step width 

Stride time 

[s] [s] 

Cor. -0.993** -0.814** 0.414  -0.977** -0.457* 0.422  -0.916** -0.860** -0.136 

Sig. (2-tailed) 0.000 0.000 0.069 

 

0.000 0.043 0.064 

 

0.000 0.000 0.578 

Cadence 

[steps/s] 

Cor.  0.840** -0.427   0.414 -0.526*   0.941** 0.011 

Sig. (2-tailed) 

 

0.000 0.061 

  

0.069 0.017 

  

0.000 0.964 

Velocity 

[m/s] 

Cor.   -0.413    -0.005    -0.249 

Sig. (2-tailed) 

  

0.070 

   

0.984 

   

0.319 

 N = 20  N = 20  N = 19 

*. Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed). 

Tab. 10: Within-system correlations in the force plate analysis. Cor. = correlation after Pearson, T2 = second measurement point. Significant correlations are 

highlighted in bold  
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Gait – Sensor System 

Within the sensor system, moderate to very strong correlations existed between all variables, besides for the step width. This variable 

showed only two moderate but significant correlations within the tandem gait after the training interval (T2): One with stride time and 

one with velocity.  
 

Normal gait T1 

 

Backward gait T1 

 

Tandem gait T1 
 

Cadence Velocity Step width [cm] 

 

Cadence Velocity Step width 

 

Cadence Velocity Step width 

Stride time 

[s] 

Cor. -0.985** -0.861** 0.236  -0.995** -0.535** -0.199  -0.950** -0.740** -0.156 

Sig. (2-tailed) 0.000 0.000 0.267 

 

0.000 0.007 0.352 

 

0.000 0.000 0.488 

Cadence 

[steps/s] 

Cor.  0.854** -0.280   0.521** 0.172   0.838** 0.153 

Sig. (2-tailed) 

 

0.000 0.184 

  

0.009 0.422 

  

0.000 0.497 

Velocity 

[m/s] 

Cor.   -0.351    0.134    0.019 

Sig. (2-tailed) 

  

0.093 

   

0.532 

   

0.932 

 N = 24  N = 24  N = 24 

 
 

Normal gait T2 

 

Backward gait T2 

 

Tandem gait T2 
 

Cadence Velocity Step width [cm] 

 

Cadence Velocity Step width 

 

Cadence Velocity Step width 

Stride time 

[s] 

Cor. -0.995** -0.727** 0.273  -0.993** -0.472* -0.010  -0.986** -0.851** -0.433* 

Sig. (2-tailed) 0.000 0.000 0.231 

 

0.000 0.031 0.967 

 

0.000 0.000 0.050 

Cadence 

[steps/s] 

Cor.  0.727** -0.277   0.452* -0.027   0.759** 0.318 

Sig. (2-tailed) 

 

0.000 0.224 

  

0.040 0.906 

  

0.000 0.172 

Velocity 

[m/s] 

Cor.   -0.113    0.051    0.580** 

Sig. (2-tailed) 

  

0.625 

   

0.825 

   

0.007 

 N = 21  N = 21  N = 21 

*. Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed). 

Tab. 11: Within-system correlations in the sensor system. Cor. = correlation after Pearson, T1 = first study visit, T2 = second study visit   
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Gait – Smartphone 

For the smartphone app, moderate to very strong correlations exist between cadence and stride time for all three gait tasks, but not 

between velocity and the other two variables. Only one significant, moderate correlation was found for velocity, with stride time in the 

tandem gait at T2. Step width was not included in the analysis.  
 

Normal gait T1 

 

Backward gait T1 

 

Tandem gait T1 
 

Cadence Velocity [m/s] 

 

Cadence Velocity 

 

Cadence Velocity 

Stride time 

[s] 

Cor. -0.985** 0.282  -0.964** -0.058  -0.969** -0.091 

Sig. (2-tailed) 0.000 0.273 

 

0.000 0.815 

 

0.000 0.711 

Cadence 

[steps/s] 

Cor.  -0.008   0.098   0.148 

Sig. (2-tailed)  0.974 

 

 0.690 

 

 0.545 

 N = 18  N = 19  N = 19 

 
 

Normal gait T2 

 

Backward gait T2 

 

Tandem gait T2 
 

Cadence Velocity [m/s] 

 

Cadence Velocity 

 

Cadence Velocity 

Stride time 

[s] 

Cor. -0.990** 0.040  -0.987** 0.413  -0.984** -0.561* 

Sig. (2-tailed) 0.000 0.888 

 

0.000 0.207 

 

0.000 0.046 

Cadence 

[steps/s] 

Cor.  0.069   -0.441   0.530 

Sig. (2-tailed)  0.808 

 

 0.175 

 

 0.062 

 N = 15  N = 11  N = 13 

*. Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed). 

Tab. 12: Within-system correlations in the smartphone analysis. Cor. = correlation after Pearson, T1 = first study visit, T2 = second study visit 
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Next, within-system correlations are shown for the balance variables, that is, the correlation between the sway area of the center of 

mass (COM) and the velocity of the COM at the same study visit and the same task. Within the force plate analysis and the sensor 

system nearly all correlations were moderate to strong and significant, while in the smartphone analysis correlations – if present – 

were weaker and only two of them reached significance: The tandem stance and the narrow stance with eyes closed at the second 

study visit (T2).  

Balance – Force Plate 
 

Narrow stance T1 

 

Tandem stance T1 

 

NS eyes closed T1 

 

Single leg stance T1 
 

COP velocity [mm/s] 

 

COP velocity 

 

COP velocity 

 

COP velocity 

COP ellipse 

[mm2] 

Cor. 0.747**  0.562**  0.695**  0.520* 

Sig. (2-tailed) 0.000 

 

0.004 

 

0.000 

 

0.019 

 N = 25  N = 24  N = 24  N = 20 

 
 

Narrow stance T2 

 

Tandem stance T2 

 

NS eyes closed T2 

 

Single leg stance T2 
 

COP velocity [mm/s] 

 

COP velocity 

 

COP velocity 

 

COP velocity 

COP ellipse 

[mm2] 

Cor. 0.458*  0.855**  0.568**  0.759** 

Sig. (2-tailed) 0.042 

 

0.000 

 

0.005 

 

0.000 

 N = 20  N = 20  N = 20  N = 20 

*. Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed). 

Tab. 13: Within-system correlations in the force plate analysis. Cor. = correlation after Pearson, T1 = first study visit, T2 = second study visit 

Balance – Sensor System 
 

Narrow stance T1 

 

Tandem stance T1 

 

NS eyes closed T1 

 

Single leg stance T1 
 

COP velocity [mm/s] 

 

COP velocity 

 

COP velocity 

 

COP velocity 

COP ellipse 

[mm2] 

Cor. 0.834** 

 

0.229  0.803**  0.863** 

Sig. (2-tailed) 0.000 

 

0.306 

 

0.000 

 

0.000 

 N = 24 

 

N = 22  N = 23  N = 20 
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Narrow stance T2 

 

Tandem stance T2 

 

NS eyes closed T2 

 

Single leg stance T2 
 

COP velocity [mm/s] 

 

COP velocity 

 

COP velocity 

 

COP velocity 

COP ellipse 

[mm2] 

Cor. 0.655**  0.749**  0.800**  0.851** 

Sig. (2-tailed) 0.002 

 

0.000 

 

0.000 

 

0.000 

 N = 20  N = 20  N = 21  N = 18 

*. Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed). 

Tab. 14: Within-system correlations in the sensor system. Cor. = correlation after Pearson, N = number of valid cases, T1 = first study visit, T2 = second study 

visit 

Balance – Smartphone 
 

Narrow stance T1 

 

Tandem stance T1 

 

NS eyes closed T1 

 

Single leg stance T1 
 

COP velocity [mm/s] 

 

COP velocity 

 

COP velocity 

 

COP velocity 

COP ellipse 

[mm2] 

Cor. 0.360  0.007  0.447  0.732** 

Sig. (2-tailed) 0.156 

 

0.978 

 

0.109 

 

0.003 

 N = 17  N = 16  N = 14  N = 14 

 
 

Narrow stance T2 

 

Tandem stance T2 

 

NS eyes closed T2 

 

Single leg stance T2 
 

COP velocity [mm/s] 

 

COP velocity 

 

COP velocity 

 

COP velocity 

COP ellipse 

[mm2] 

Cor. 0.482  0.530  0.620*  0.388 

Sig. (2-tailed) 0.081 

 

0.093 

 

0.031 

 

0.268 

 N = 14  N = 11  N = 12  N = 10 

*. Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed). 

Tab. 15: Within-system correlations in the smartphone analysis. Cor. = correlation after Pearson, N = number of valid cases, T1 = first study visit, T2 = second 

study visit 
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4.3 Between-System Correlations 

Correlations are shown between all gait analysis system for the different variables at T1. For normal gait, strong to very strong 

correlations existed between all variables, except for the step width, between the sensor system and the force plate. Negligible to 

moderate correlations existed between the smartphone app and the other two systems, five of them reaching statistical significance.  

Normal Gait 

 

 

Sensor system 

 

 Smartphone 

   Stride time Velocity Step width Cadence  Stride time Cadence Velocity 

F
o

rc
e
 p

la
te

 

Stride time Cor. 0.981** -0.864** 0.171 -0.963**  0.098 -0.011 -0.550* 

Sig. (2-tailed) 0.000 0.000 0.425 0.000  0.710 0.967 0.018 

Cadence Cor. -0.983** 0.864** -0.246 0.992**  -0.170 0.096 0.534* 

Sig. (2-tailed) 0.000 0.000 0.247 0.000  0.513 0.705 0.022 

Velocity Cor. -0.708** 0.925** -0.195 0.695**  0.004 0.146 0.417 

Sig. (2-tailed) 0.000 0.000 0.360 0.000  0.988 0.563 0.086 

Step width Cor. 0.272 -0.274 0.430* -0.327  -0.211 -0.125 -0.536* 

Sig. (2-tailed) 0.199 0.195 0.036 0.119  0.416 0.622 0.022 

   N = 24  N = 18 

S
e
n

s
o

r 
s
y

s
te

m
 

Stride time Cor.      0.157 -0.055 -0.476 

Sig. (2-tailed)      0.563 0.835 0.053 

Cadence Cor.      -0.235 0.136 0.487* 

Sig. (2-tailed)      0.381 0.603 0.047 

Velocity Cor.      -0.052 0.171 0.508* 

Sig. (2-tailed)      0.848 0,512 0.038 

Step width Cor.      0.393 -0.452 0.171 

Sig. (2-tailed)      0.132 0.068 0.511 

     N = 17 

*. Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed). 

Tab. 16: Between-system correlations for normal gait (T1). Cor. = correlation after Pearson. Italic font indicates a significance by trend. N = number of valid cases 
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Backward Gait 

In the backward gait, similar but weaker patterns as in the normal gait were observed between the force plate and the sensor system. 

Between the smartphone and the other two gait analysis systems, only one correlation reached statistical significance (velocity of 

JTrack with velocity of the force plate). 

 

 

Sensor system 

 

 Smartphone 

   Stride time Velocity Step width Cadence  Stride time Cadence Velocity 

F
o

rc
e
 p

la
te

 

Stride time Cor. 0.731** -0.475* -0.340 -0.699**  0.270 -0.276 -0.103 

Sig. (2-tailed) 0.000 0.019 0.104 0.000  0.264 0.252 0.674 

Cadence Cor. -0.714** 0.408* 0.356 0.687**  -0.297 0.301 0.176 

Sig. (2-tailed) 0.000 0.048 0.088 0.000  0.217 0.211 0.471 

Velocity Cor. -0.150 0.453* 0.110 0.138  -0.183 0.244 0.588** 

Sig. (2-tailed) 0.485 0.026 0.610 0.520  0.453 0.315 0.008 

Step width Cor. 0.353 -0.107 -0.195 -0.379  0.062 -0.047 -0.020 

Sig. (2-tailed) 0.090 0.619 0.361 0.068  0.800 0.847 0.936 

   N = 24  N = 19 

S
e
n

s
o

r 
s
y

s
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Stride time Cor.      0.165 -0.209 0.114 

Sig. (2-tailed)      0.513 0.404 0.652 

Cadence Cor.      -0.178 0.219 -0.112 

Sig. (2-tailed)      0.479 0.382 0.659 

Velocity Cor.      -0.109 0.152 0.087 

Sig. (2-tailed)      0.667 0.548 0.733 

Step width Cor.      0.031 -0.076 0.301 

Sig. (2-tailed)      0.904 0.766 0.224 

     N = 18 

*. Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed). 

Tab. 17: Between-system correlations for the backward gait at T1. Cor. = correlation after Pearson, N = number of valid cases  
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Tandem Gait 

In the tandem gait, similar patterns as in the two other gait tasks were again observed between the sensor system and the force plate. 

Between the smartphone and the sensor system, patterns were similar to the ones in the backward gait. Between the smartphone and 

the other two systems, four correlations reached statistical significance (two with smartphone velocity and two with step width of the 

sensor system). 

 

 

Sensor system 

 

 Smartphone 

   Stride time Velocity Step width Cadence  Stride time Cadence Velocity 

F
o
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e
 p

la
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Stride time Cor. 0.901** -0.535* -0.310 -0.836**  -0.217 0.228 -0.155 

Sig. (2-tailed) 0.000 0.018 0.226 0.000  0.436 0.413 0.580 

Cadence Cor. -0.862** 0.581** 0.193 0.861**  0.138 -0.143 0.151 

Sig. (2-tailed) 0.000 0.007 0.442 0.000  0.623 0.611 0.591 

Velocity Cor. -0.696** 0.618** 0.193 0.699**  -0.239 0.234 0.515* 

Sig. (2-tailed) 0.001 0.004 0.442 0.001  0.392 0.401 0.050 

Step width Cor. -0.154 0.278 -0.403 0.165  -0.268 0.240 0.005 

Sig. (2-tailed) 0.516 0.234 0.097 0.486  0.334 0.389 0.987 

   N = 19  N = 15 

S
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n

s
o

r 
s
y

s
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Stride time Cor.      -0.268 0.329 -0.224 

Sig. (2-tailed)      0.281 0.183 0.371 

Cadence Cor.      0.216 -0.264 0.270 

Sig. (2-tailed)      0.389 0.290 0.279 

Velocity Cor.      -0.076 0.024 0.534* 

Sig. (2-tailed)      0.763 0.926 0.022 

Step width Cor.      0.519* -0.577* -0.002 

Sig. (2-tailed)      0.033 0.015 0.994 

     N = 17 

*. Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed). 

Tab. 18: Between-system correlations for the tandem gait at T1. Cor. = correlation after Pearson, N = number of valid cases   
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Stance Tasks 

Correlations between the systems in the stance tasks are shown for T1. Rows and columns without a significant correlation were 

removed from the table to improve readability and facilitate an overview. Similar to the correlations for gait, several positive significant 

correlations were found between the sensor system and the force plate, while only two positive significant correlations were found 

between smartphone and force plate, and no positive significant correlation between smartphone and sensor system. No significant 

correlations with smartphone variables were found for normal stance. 

  Sensor system  Smartphone 

   NS 
velocity 

NS 
ellipse 

TS 
velocity 

TS 
ellipse 

NSEc 
velocity 

NSEc 
ellipse 

SS 
velocity 

SS 
ellipse 

 TS 
ellipse 

TS 
velocity 

NSEc 
ellipse 

NSEc 
velocity 

SS 
ellipse 

SS 
velocity 

F
o

rc
e
 p
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NS 
ellipse 

Cor. ,655** ,697** 0,170 0,066 0,376 0,340 -0,005 -0,211  ,531* -0,142 0,220 0,078 -0,085 0,112 

Sig. 0,001 0,000 0,450 0,766 0,070 0,112 0,982 0,372  0,034 0,586 0,450 0,775 0,773 0,680 

N 24 24 22 23 24 23 21 20  16 17 14 16 14 16 

NS 
velocity 

Cor. ,673** ,534** 0,238 -0,047 ,412* 0,335 0,264 -0,037  ,588* -0,378 0,047 0,007 -0,090 -0,095 

Sig. 0,000 0,007 0,286 0,831 0,046 0,118 0,247 0,875  0,017 0,134 0,874 0,979 0,760 0,728 

N 24 24 22 23 24 23 21 20  16 17 14 16 14 16 

TS 
ellipse 

Cor. 0,048 0,294 0,371 ,483* 0,221 0,096 -0,095 -0,074  -0,105 0,305 -0,154 -0,270 -,564* -0,382 

Sig. 0,825 0,164 0,090 0,020 0,300 0,664 0,683 0,757  0,698 0,234 0,599 0,311 0,036 0,144 

N 24 24 22 23 24 23 21 20  16 17 14 16 14 16 

TS 
velocity 

Cor. 0,326 0,335 ,468* 0,292 0,322 0,176 0,289 0,189  -0,310 -0,009 -,607* -0,238 -0,331 -0,155 

Sig. 0,129 0,119 0,028 0,177 0,135 0,432 0,204 0,424  0,261 0,973 0,028 0,392 0,270 0,581 

N 23 23 22 23 23 22 21 20  15 16 13 15 13 15 

NSEc 
ellipse 

Cor. ,474* ,680** 0,030 0,252 ,715** ,782** 0,086 -0,067  -0,111 -0,224 -0,215 -0,145 -0,368 0,040 

Sig. 0,022 0,000 0,893 0,258 0,000 0,000 0,720 0,785  0,683 0,387 0,461 0,592 0,195 0,882 

N 23 23 22 22 23 23 20 19  16 17 14 16 14 16 

NSEc 
velocity 

Cor. ,534** ,483* 0,121 0,299 ,752** ,605** 0,091 -0,126  0,194 -0,091 -0,014 -0,012 -0,164 0,063 

Sig. 0,007 0,017 0,592 0,165 0,000 0,002 0,696 0,598  0,472 0,727 0,963 0,964 0,576 0,815 

N 24 24 22 23 24 23 21 20  16 17 14 16 14 16 
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  Sensor system  Smartphone 

   NS 
velocity 

NS 
ellipse 

TS 
velocity 

TS 
ellipse 

NSEc 
velocity 

NSEc 
ellipse 

SS 
velocity 

SS 
ellipse 

 TS 
ellipse 

TS 
velocity 

NSEc 
ellipse 

NSEc 
velocity 

SS 
ellipse 

SS 
velocity 

 SS 
ellipse 

Cor. 0,349 0,291 0,285 0,188 0,323 0,089 ,660** ,672**  0,238 -,601* -0,306 -0,346 -0,135 0,293 

Sig. 0,143 0,227 0,252 0,442 0,178 0,725 0,002 0,002  0,456 0,030 0,333 0,246 0,693 0,331 

N 19 19 18 19 19 18 19 18  12 13 12 13 11 13 

SS 
velocity 

Cor. 0,189 0,279 0,168 -0,088 0,000 0,107 ,706** ,679**  -0,203 -0,240 -0,444 -0,475 -,624* -,626* 

Sig. 0,388 0,197 0,455 0,689 1,000 0,635 0,000 0,001  0,467 0,372 0,129 0,073 0,023 0,012 

N 23 23 22 23 23 22 21 20  15 16 13 15 13 15 

 

                 

S
e
n

s
o

r 
s
y

s
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NS 
velocity 

Cor.          0,500 -,621* 0,012 0,255 0,053 0,140 

Sig.          0,058 0,010 0,969 0,359 0,864 0,620 

N          15 16 13 15 13 15 

SS 
velocity 

Cor.          -0,260 -0,512 -0,451 -,576* -,656* 0,116 

Sig.          0,392 0,061 0,164 0,040 0,029 0,705 

N          13 14 11 13 11 13 

SS 
ellipse 

Cor.          -0,290 0,148 -0,380 -,685* -,689* -0,527 

Sig.          0,361 0,630 0,279 0,014 0,019 0,078 

N          12 13 10 12 11 12 

*. Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed). 

Tab. 19: Between-system correlations for the stance tasks at T1. Cor. = correlation after Pearson, N = number of valid cases, NS = narrow stance, TS = tandem 

stance, NSEc = narrow stance with eyes closed, SS = single leg stance 
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5 Discussion 

This study investigated several gait and balance tasks in healthy adults before and 

after a three-week gait and balance training, and compared the smartphone with two 

other gait analysis systems for the evaluation of these tasks.  

Since physical activity is known to have a significant impact on mental well-being and 

vice versa, the motor assessment in this study was accompanied by several 

questionnaire scores addressing depression, anxiety, general well-being, stress, self-

efficacy, optimism, pessimism and balance confidence. However, although most of 

the questionnaires were supposed to address different aspects of mental well-being 

or abilities, they were clearly related to each other with moderate to even strong 

correlations: For example, a higher depression score correlated moderately with a 

higher stress score and strongly with a lower general habitual well-being, or a higher 

anxiety score correlated moderately with a higher depression score, with a lower self-

efficacy and with a lower general habitual well-being. Only weak but non-significant 

correlations were found for the pessimism part of the SWOP-K9 questionnaire and 

only one moderate correlation was found for the ABC-D score with the stress score of 

the PHQ questionnaire. However, compared to the other questionnaires used, the 

ABC-D questionnaire focused less on emotional aspects or attitudes and more on the 

individual assessment of physical abilities, so that lack of correlations was not 

surprising.  

5.1 Differences Over Time – Training Effects 

5.1.1 Questionnaires 

The questionnaire scores did not differ significantly between the two study visits T1 

and T2. This indicates that the here performed gait and balance training did not have 

an impact on self-efficacy, optimism, pessimism, general habitual well-being or on 

activity-specific balance confidence. This is an unexpected result, as physical 

exercise and movement is known to improve mood and self-efficacy (White et al., 

2009). Physical therapy or exercises can reduce fatigue and improve the capability to 

improve one’s emotional life (Fischetti et al., 2019) and Mikkelsen et al. (2017) cited 

several positive effects of physical activity on mental health in their review and even 

write that it can improve mental well-being as well as psychotherapy. On the other 

hand, female participants had a mean score of 56.7 (±15.9) points in the FAHW 

questionnaire at T1 and male participants had a mean score of 61.8 (±18.1) points, 

which is above-average for female and even strongly above-average for male 

participants (according to reference values for healthy men and women in Wydra, 

2014). This indicates that the general well-being of the participants was already at a 

high level before the intervention and hence does not leave much room for 

improvement.  
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Due to several constraints (study duration, compliance), a three-week period was 

chosen as the training period in this study. While Mikkelsen et al. (2017) reported that 

exercising for 15 minutes three times per week already reduced depressive 

symptoms, most studies have chosen a longer time period for the training program or 

a longer duration for each unit. For instance, a large cross-sectional study in the USA 

showed the strongest effects of physical exercise on mental health with a training 

duration of 45 minutes or at frequencies of three to five times per week (Chekroud et 

al., 2018). Sherrington et al. (2008) even recommended a minimum of two hours per 

week for 25 weeks to maximize the effectiveness of balance training and to prevent 

falls. In a more specific context, the highest effectiveness of video-based 

rehabilitation programs was found after at least of four weeks (Kim et al., 2016). 

Thus, on the one hand, a higher training volume or frequency can lead to better 

training results.  

On the other hand, a higher training volume could also reduce compliance, as the 

subjective cost may exceed the subjective benefit of the training. In Haines et al. 

(2009), a drop in compliance was found already after three weeks. During our study, 

lasting four weeks, we did not observe any apparent decrease in compliance (as 

measured by the number of training sessions and home measurements taken). We 

tried to reach a high compliance by trying to avoid reasons to lose compliance and 

trying to implement possibilities to increase compliance named in the study from 

Essery et al. (2017). For example, the JuTrack EMA App, which we used for 

answering questionnaires once a week, serves as an automatic reminder for the 

participants to complete their questionnaires and exercises. In the gait and balance 

training via offline video footage, exercises were explained in detail and the purpose 

of the exercise was tried to be made understandable. It was allowed to recruit friends 

or relatives for the study. 

Regardless of training volume, frequency and compliance, the content of the training 

plays an important role for its success. As indicated by the oral or written feedback 

from some participants, the demands were perceived differently, ranging from “very 

demanding and challenging” to “not challenging enough”. This is not unexpected, as 

the age range of the participants was quite large and motor skills or athleticism vary 

across random samples and different age groups. Therefore, training should probably 

be more individualized in the future, or more specific groups (e.g. smaller age range 

or more homogenous with respect to motor skills) should be preferred. It should be 

noted that feedback was given in a free form rather than in a standardized manner. 

This could be improved in the future to better evaluate the feedback.  

Nevertheless, small changes in the minimum and maximum scores can be observed 

(e.g. higher minimum self-efficacy score, higher maximum well-being score) and 

indicate that larger changes could possibly occur with a more intense or longer 

training program. However, the volume of training is still much lower compared to the 

time spent in other daily activities (e.g. work), so it is not only gait and balance 

training that affects the questionnaire scores. Therefore, the scores may not be 

sensitive enough to detect training-induced changes. Additionally, as indicated 
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earlier, general well-being of the participants already was at a high level before the 

intervention. 

5.1.2 Gait Performance 

Mean values of gait variables were comparable to those found in the literature, e.g. 

our values for stride time (0.94s-1.2s in normal gait at T1) were similar to a healthy 

control group in Pawik et al. (2021), with a stride time of 1.16s, and to the mean value 

of male and female police officers without carrying police equipment (averaged stride 

time of 1.09s, Kasović et al., 2020). Similarly, cadence (1.7 and 1.7 steps/s), velocity 

(0.98 and 0.97m/s) and step width (11.64cm and 10.6cm) of both force plate and 

sensor system, respectively, were a bit lower but comparable to the values of the 

police officers (1.83 steps/s, 1.25m/s and 11.65cm). The smartphone app values 

were consistent with the other two systems for stride time and cadence (1.22s and 

1.6 steps/s), while the value for velocity was around two-thirds lower (0.32m/s) and 

thus not consistent with the literature. For the backward gait, a control group of 

healthy adults (mean age 37.2y) showed a stride time of 1.2s, a cadence of 1.68 

steps/s, a velocity of 0.87m/s and step width of 16.8cm (Gimunová et al., 2021). 

These values were close to our results from all three applied gait analysis systems 

(stride time: 1.22/1.21/1.23s, cadence: 1.66/1.66/1.65 steps/s, velocity: 

0.69/0.66/0.3m/s, step width: 18.08/11.86cm). Compared to the literature, the velocity 

values differed the most and were around 20% lower for the force plate and sensor 

system and even about 65% lower for the smartphone. For step width, the sensor 

system values were lower compared to the literature, which is probably related to the 

calibration of the system: The closer the participants’ feet were in the “neutral 

position”, the smaller the absolute values of the step width were in the later analysis. 

Another study described a mean velocity of 0.98m/s for a control group of 14 healthy 

adults (mean age 44y) (Edwards et al., 2020), which is slightly faster than in our 

study sample. For the tandem gait, most studies reported only mean times (e.g. 

Oldham et al., 2017, Santo et al., 2021) or presented the results as a graph: A 

comparable sample of healthy adults (mean age 46.3y) showed cadence values of 

approximately 0.8 steps/s (Kronenbuerger et al., 2009), which is lower than the 

values found here (1.23, 1.19 and 1.57 steps/s, respectively). One study was found 

in which healthy older adults (mean age 84y) showed a cadence of 0.88 steps/s, a 

velocity of 0.27m/s and a step width of 3.5cm in the tandem gait (Rao et al., 2011), 

which is a bit lower compared to our values (1.23/1.19/1.57 steps/s, 

0.45/0.4/0.23m/s, 2.24/2.44cm – for the force plate, sensor system and smartphone, 

respectively), probably due to age. Only the step width is comparable between the 

two studies. It should also be noted that in the tandem gait the heel of one foot is 

normally placed directly in front of the toes of the other foot. In our study, however, a 

hand’s width of space had to be left between the feet to allow the force plate to 

distinguish between left and right foot. This may have facilitated the task and resulted 

in better gait performance. 

Mean values of stride time and cadence were quite similar for all three gait analysis 

systems, while the mean values of velocity were considerably lower in the 
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smartphone app. For example, normal gait had mean values of 0.98m/s and 0.97m/s 

in the force plate and sensor system, respectively, but a mean value of 0.32m/s in the 

smartphone app. In general, a high similarity for the mean values was expected 

between the JTrack data and the data of the other two systems. This was proven true 

for stride time and cadence, where mean values were quite similar, while the 

differences in the velocity were unexpectedly large. Various reasons could have 

played a role in this. For example, there are differences between the JTrack app and 

the force plate when recording the data, since the latter registers the foot print directly 

at the force plate and can thus easily determine the respective variables from the 

position data. This is less direct for both the JTrack app and the sensor system, as 

they use accelerometers and thus only indirect position data (derivate of the 

acceleration data). For the same reason, gravitational influences must also be filtered 

out, as they can distort the data. In addition, the sensor system uses multiple 

sensors, e.g. directly on the feet, while the JTrack app has only one sensor near the 

COM. This enables the sensor system to determine the relative positions of the 

sensors to one another. Taking these methodological-related differences into 

account, the differences were still larger than expected. 

There were significant improvements for some of the variables between T1 and T2. 

For the force plate, stride time decreased, cadence increased (more steps per time), 

velocity increased and step width decreased for the normal gait; stride time 

decreased and velocity increased in the backward gait. In the sensor system, stride 

time decreased and cadence increased in the normal gait, velocity increased in the 

backward gait and stride time decreased, cadence increased and velocity increased 

in the tandem gait. For the smartphone, velocity increased in the backward gait. 

These are expected and desirable changes in terms of improved gait performance 

after a training intervention, although comparable studies in healthy adults are 

currently lacking. Nevertheless, in a patient study by Conradsson et al. (2015), PD 

patients participated in a 10-week balance training program for three times per week 

and 60 minutes per session. They showed increased velocity and step length after 

training. In another study with PD patients, improvements in velocity, stride length 

and cadence were observed after therapist-supervised training (Atterbury & Welman, 

2017). The results, mentioned for normal gait in the force plate, replicated only for 

stride time and cadence in the sensor system and not at all in the smartphone app. 

However, the mean values show tendencies in the same direction, even if statistical 

significance was not reached. Only the velocity of the normal gait in the smartphone 

app showed almost the same value at T1 and T2. Similar patterns of improvement 

can be seen for backward gait and tandem gait for all three systems as well, but in 

the force plate only stride time and velocity in the backward gait reached a 

significance by trend (p<0.06). In the sensor system, velocity in the backward gait 

reached a significance by trend and stride time, cadence and velocity improved 

significantly in the tandem gait. Contrary to the overall (although not always 

significant) improvement, step width in the tandem gait was the only variable that did 

not show an improvement (mean value 2.4cm at T1 and 2.8cm at T2) in the sensor 

system. In the smartphone app, velocity improved significantly in the backward gait. 
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Altogether, a general improvement in gait variables was observed across all gait 

analysis systems, even though this could not be confirmed for all variables from a 

statistical point of view. These statistical differences depend on two other factors. 

First, the number of valid values that could be included in the statistical analysis was 

lower for the smartphone data, reducing the statistical power of the analysis, and 

second, the values obtained with the smartphone had higher standard deviations, 

both of which affects the outcome of the MANOVA. In addition, recent studies have 

identified gait variability, as measured by the standard deviation, as one of the most 

discriminatory variables between individuals with ataxia and healthy controls (Shah et 

al., 2021). Gait variability was not selected as a variable for analysis, because it was 

not available for all systems, but should be considered in future if possible.  

In summary, all three gait analysis systems showed a comparable improvement in 

gait parameters, although in the best case all systems would have shown 

significance in the exact same variables over time. The observed improvement 

between T1 and T2 is probably caused by the training performed in between. 

However, a control group undergoing the measurements at T1 and T2 without any 

training in the meantime is missing and therefore a learning effect cannot be entirely 

excluded. To confirm and substantiate the positive effects of this study, further 

investigation, including a control group, seems reasonable.  

5.1.3 Balance Performance 

Remarkably, the absolute values of both ellipse area and velocity differed quite 

strongly among the three gait analysis systems, especially for the ellipse area 

(narrow stance: 720/1522/1482mm2, tandem stance: 1430/1515/2513mm2, narrow 

stance with eyes closed: 981/1731/1467mm2, single leg stance: 878/3860/1842mm2), 

but for velocity as well (narrow stance: 15.6/6.6/16.3mm/s, tandem stance: 

52.3/8.6/17.0mm/s, narrow stance with eyes closed: 27.6/8.7/16.9mm/s, single leg 

stance: 53.6/13.1/16.9mm/s). Nevertheless, moderate to strong correlations exist 

between the force plate and the sensor system (see section 4.3 Between-System 

Correlations). According to the mean values of these two variables, the tandem 

stance and the single leg stance appear to be the most challenging of the four stance 

tasks. However, no clear pattern was visible when displaying the mean values for all 

systems and both study visits (see Fig. 7).  

Mean values of the balance performance are comparable with the literature. A control 

group of 44 healthy young adults (mean age 23.1y) showed an average ellipse area 

of 44.1mm2 at normal stance in Nusseck and Spahn (2020) and healthy adults 

between 21 to 69 years showed an average ellipse area of 70±44mm2 and a velocity 

of 24.3±10.8mm/s at normal stance in Pomarino et al. (2013). In our study, the 

velocity is comparable or slightly higher than the values for the narrow stance: We 

found mean velocities of 15.6, 6.6 and 16.3mm/s (for force plate, sensor system and 

smartphone, respectively). However, the values for the area of ellipse are very 

different from those in our study: Here we found mean values of 719.9, 1521.9 and 

1746.1mm2, respectively. At first glance, this is very surprising, but it certainly 
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depends on methodological differences regarding the calculation, which is not 

specified in the studies mentioned. Pomarino et al. (2013) mention though, that their 

balance measures were averaged over the recording time. This could mean that mm2 

values are given as mean per second. As stance tasks in our study were recorded for 

30s, the average values for normal stance are 24, 50.7 and 58.2mm2, respectively, 

which again is comparable to or slightly lower than in the studies by Nusseck and 

Spahn (2020) and Pomarino et al. (2013). For the other stance tasks, there were few 

reference values for healthy adults. One study reported an ellipse area of 138mm2 for 

the single leg stance in a control group of older adults (mean age 65.4y, W. Sun et 

al., 2018), while we found values of 878, 3860 and 1842mm2 in our study (averaged 

values per second: 29, 129 and 61.4mm2). However, it is unclear if the values were 

averaged in the cited study. If so, the values in our study were somewhat lower 

compared to the literature, possibly due to a lower mean age of the participants. The 

velocities were only reported separately for mediolateral and anteroposterior 

directions and are thus not comparable to our values. Terra et al. (2020) examined 

the same stance tasks in PD patients that we chose for our study and found the 

lowest values for the COM ellipse and narrow stance velocity, followed by narrow 

stance with eyes closed, then tandem stance and finally single leg stance. Because 

the three gait analysis systems in our study produced different results (see Fig. 7), 

this order could only partially be replicated: The same order could only be found for 

the sensor system at both study visits, while the other two systems showed higher 

values for the tandem stance than for the single leg stance and the smartphone 

showed similar values for the narrow stance and narrow stance with eyes closed 

at T1. 

Statistical analysis did not show many significant improvements in balance 

performance from study visit T1 to study visit T2 after training. A significant difference 

was found in the force plate, where the mean velocity decreased in the tandem 

stance. The second and third significant differences were found in the smartphone 

app, which showed a significant decrease in movement speed for narrow stance and 

a significant decrease in the ellipse area for single leg stance. The sensor system did 

not show any significant differences. In contrast to the gait tasks, where small 

improvements in performance were observed for all variables (even though not 

always reaching statistical significance), there were some variables in the balance 

tasks that showed no tendencies of improvement (see Tab. 9): For example, the area 

of the ellipse increased in the single leg stance in the force plate, and it increased for 

all stance tasks except the single leg stance in the smartphone app. Velocities 

increased slightly but unexpectedly in the narrow stance (force plate), tandem stance 

(sensor system and smartphone) and single leg stance (smartphone). While 

comparable studies with healthy adults are missing, some patient studies reported 

clearer patterns of improvement. In other studies, clearer patterns of improvement 

could be observed. For example, Stożek et al. (2016) compared PD patients with and 

without a rehabilitation program in several gait and balance tasks, and found 

significant improvements for all parameters directly after and one month after the 

training program. However, this cannot be generalized to healthy adults, as the 
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baseline performance is expected to be worse for PD patients. Cadore et al. (2013) 

also summarized in their review, that most balance trainings led to enhancements in 

balance. Again, the results cannot necessarily be compared with ours, as the studies 

examined there investigated effects in older adults with physical frailty and not in 

healthy adults. 

5.1.4 Summary 

While improvements were found for both gait and balance performance, this effect 

was more pronounced for gait performance. Agreement between the three gait 

analysis systems was found only partially, again with a higher agreement for the gait 

variables. For the future, the most effective intervention program would combine a 

longer time frame for exercise interventions with major efforts to maintain or even 

improve study compliance. For this purpose, some simple steps could be added in 

future to increase compliance – for example, the smartphone app could include some 

sort of “to do list”, so that it is obvious to participants what steps they have completed 

already and how much of their tasks remain.  

5.2 Evaluation of Gait Analysis Systems 

First of all, it should be noted that the number of valid cases was lower for all 

variables within the T2 measurement point than within the T1 measurement point. 

This has an impact on the statistical significance of a correlation. However, 

differences are moderate for the force plate and sensor system (e.g. 25 vs. 

20 participants, 24 vs. 21 participants), but more pronounced for the smartphone app 

(e.g. 19 vs. 11 participants in the backward gait). 

Within the force plate analysis, there were several significant correlations between 

gait variables and between balance variables. The pattern of correlation between 

normal gait and tandem gait was similar, showing correlations between all time-

related variables, while no correlations were found for step width. More precisely, 

stride time correlated negatively and very strongly with the cadence (less stride time, 

more steps per second). Velocity correlated strongly with stride time and cadence in 

normal gait and tandem gait, for both T1 and T2. In contrast, in the backward gait 

velocity correlated only weakly to moderately with stride time and cadence at both T1 

and T2, and only the correlation between velocity and stride time at T2 reached 

statistical significance. A very strong correlation was found between cadence and 

stride time and negligible to moderate correlations were found for the step width with 

the other variables, similar to normal and tandem gait. One moderate, negative 

correlation between step width and cadence in the backward gait at T2 (more 

cadence, less step width) was the only correlation where the step width reached 

statistical significance. Altogether, after the training interval most correlations got 

slightly stronger and for backward gait even two further correlations gained 

significance. Most interestingly, this included also one correlation with step width. 

Moderate to strong positive correlations were also found between the balance 

variables (COM ellipse area and velocity) for all stance tasks. This is an expected 
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result, as participants who are more unstable tend to have both a larger ellipse area 

and a higher movement velocity (e.g. younger kids, Pomarino et al., 2013). However, 

the pattern of correlation changed after the training interval: While before the training 

interval the strongest correlation was found for narrow stance (r=0.747) and the 

weakest correlation for the single leg stance (r=0.520), this was the other way around 

after the training interval (r=0.458 and r=0.759, respectively). Moreover, the strongest 

correlation after the training interval was found for the two variables of tandem stance 

(r=0.855).  

In the Xsens software, similar correlations as in the force plate were found between 

stride time and cadence in all three gait tasks. The pattern of moderate to very strong 

correlations between the time-related variables was very similar to the pattern 

observed with the force plate system at T1 for normal gait and tandem gait. In 

contrast to the force plate system, correlations with velocity reached statistical 

significance in the backward gait as well, for both T1 and T2 (more velocity, less 

stride time and higher cadence), while again no correlations were found for step 

width. After the training interval, however, two moderate correlations with step width 

(and stride time/velocity) reached significance in the tandem gait (less step width with 

more stride time and less velocity). Again, step width in summary showed mostly 

negligible to weak correlations to the other variables. Besides the two newly added 

correlations with step width, the correlation coefficients remained stable or even 

decreased a bit from T1 to T2, which is in contrast to the increased correlation 

coefficients in the force plate system. For the balance variables, similar patterns as in 

the force plate analysis were found, except for the tandem stance at T1, where only a 

weak positive correlation was observed. In contrast to the force plate, the single leg 

stance consistently showed the highest correlation at both T1 and T2.  

For the smartphone data, similar correlations to the other two systems were again 

found between stride time and cadence for all three gait tasks. However, velocity 

showed negligible to moderate correlations with stride time and cadence and only 

one correlation in the tandem gait reached statistical significance (less velocity with 

more stride time at T2). Surprisingly, the balance variables overall only showed 

moderate correlations and only two of them reached statistical significance: the single 

leg stance and T1 (r=0.732) and the narrow stance with eyes closed at T2 (r=0.620). 

However, the other variables showed moderate correlations as well. Only one 

negligible correlation was found between the COM ellipse area and velocity in the 

tandem stance at T1, similarly to the sensor system analysis, where also only a weak 

correlation was found for these variables. As mentioned earlier, fewer valid cases 

were available for the smartphone analysis, which affects the statistical analysis. No 

one-sided change in the correlation pattern could be observed before and after the 

training intervention, but three out of four correlation coefficients increased, while only 

one (single leg stance) decreased. The two strongest changes occurred firstly in the 

tandem stance, where a negligible correlation was found at T1 (r=0.007), but a 

moderate correlation at T2 (r=0.530), although both not reaching statistical 
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significance; and secondly in the single leg stance, where a strong, significant 

correlation was found at T1 (r=0.732) and only a weak correlation at T2 (r=0.388).  

In summary, moderate to very strong correlations were found between most of the 

variables within a system, except for the step width, which correlated only moderately 

or not at all with any of the other variables within a system. The consistency of the 

observed correlations between most gait variables – independently of the applied 

system and training – indicates a basic and quite stable relationship between these 

parameters. Only minor differences were observed between T1 and T2, again 

indicating a stable relationship within the variables of one system. Compared to the 

other systems, the smartphone provided the lowest correlation coefficients. As a 

consequence, an improvement in data accuracy should be attempted by reducing 

interference factors and by improving the evaluation of outcome variables.  

5.2.1 Conformance of the Three Gait Analysis Systems 

When putting the three systems in relation to each other, moderate to very strong 

correlations were found between most of the gait variables of the force plate and the 

sensor system, except for step width. In detail, strong to very strong correlations 

(r>0.83) were found between stride time and cadence in normal gait and tandem gait, 

while they were slightly weaker in the backward gait (r>0.68). Velocity correlated 

strongly with cadence and stride time in normal gait (r>0.7), moderately in tandem 

gait (r>0.54), but only weakly to moderately in backward gait (ranging from r=0.11 to 

r=0.475). In the case of step width, only one correlation reached statistical 

significance: The correlation between the two step width values in normal gait of both 

systems (r=0.43). All named correlations were in accordance with the expected 

direction, i.e. significant correlations between cadence and velocity were positive 

(higher cadence, higher velocity) and correlations between stride time and the other 

two variables were negative (less stride time, higher cadence and higher velocity). 

Next, outcomes of the smartphone were compared to the other two analysis systems. 

For normal gait, only the smartphone velocity showed moderate correlations with any 

of the variables of the force plate: A higher velocity was related to less stride time and 

step width, and to a higher cadence. For backward gait and tandem gait, only the 

correlation between the two velocity values of force plate and the smartphone 

showed a significant, moderate correlation. Between smartphone and the sensor 

system, two correlations were significantly, moderately correlated in normal gait: A 

higher velocity in the smartphone data was related to a higher cadence and velocity 

in the sensor system. No significant correlation between any of the variables was 

found in backward gait. In the tandem gait, the two velocity values again showed a 

significant, moderate correlation, similar to the smartphone compared to the force 

plate. Additionally, lower step width in the sensor system was related to lower stride 

time and higher cadence in the smartphone.  

Interestingly, the gait analysis systems show the best agreement within the normal 

gait, followed by tandem gait and a clearly lower agreement with backward gait. 

Comparable to the results of Steins et al. (2014), who have found only moderate 
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agreement between an iPod touch and the sensor system, we found moderate 

correlations at the most between the smartphone data and the other two systems as 

well. However, between some of the variables of sensor system and the force plate 

even strong or very strong correlations were found. Other studies also describe the 

analysis with an iPod touch as an acceptable method for assessing gait in rheumatic 

patients (Yamada et al., 2012) or as a potentially good opportunity for future use in 

the clinic (Ellis et al., 2015). The latter study used an ANOVA to define effect sizes 

that were captured by either Group, Task or Device. They found small or negligible 

effect sizes for most of the variables for Device, indicating that group effects or task 

effects were not significantly influenced by the type of device which was used (iPod 

touch versus heel-mounted footswitches and a GAITRite™ sensor walkway).  

5.2.2 Handling and Ease of Use of the Systems 

The force plate, as the most commonly used systems for gait analysis, has its 

advantages mainly in the straightforwardness: Once the plates are set up and 

connected, there is not much more to do than starting the recording and letting the 

participant walk across the plate. However, the force plates are usually designed for 

performing normal gait and turns, sometimes for backward gait. When performing 

unusual gait tasks, as the tandem gait, the software does not always recognize the 

feet correctly, leading to shorter periods that are available for analysis. Moreover, the 

software automatically creates gait reports including the most important gait 

parameters, which simplifies the evaluation.  

Xsens MVN is a simple and user-friendly system, managed via a graphical user 

interface and live transmission of the sensor data to create an avatar of the 

participant. This simplifies the search for errors that might occur during the 

measurement: e.g. if the calibration did not work properly, body segments of the 

avatar are displayed in an unnatural position or are spinning around. Additionally, the 

avatar provides an interesting and often motivating insight for the participant into the 

technical background of the measurement. While set-up and preparation take more 

time compared to the force plate, a more individualized and detailed evaluation can 

take place when using the resulting raw data. Raw data of the force plate could be 

used as well, but only display force data over time. The Xsens data, on the contrary, 

include calibrated and smoothed sensor data (position, acceleration, orientation) of 

all segments and therefore allow manifold analyses.  

The smartphone apps were easy to install and to handle and also have a simple and 

user-friendly interface. In the beginning, some smartphones had technical problems, 

so that the questionnaires could not be presented to the participants, but this could 

be solved soon. Answering questionnaires on the smartphone seems to be 

convenient, as participants could choose the time of answering to fit their daily 

schedule and as resources (i.e. paper) can be saved. Measuring gait and balance at 

home seems to be convenient for the same reasons, but have the disadvantage that 

the execution of the exercises cannot be controlled and is therefore more prone to 

error.  
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6 Conclusion and Outlook 

Our analysis has shown that measuring gait and balance in healthy adults with 

wearable devices, such as smartphones, produces comparable, but somewhat less 

clear results compared to measuring with a force plate or a sensor system. While 

there is already a good agreement for the normal gait, adjustments may have to be 

made in the data evaluation for the other types of gait task investigated in this study 

to achieve better agreement. We hypothesized that an improvement in gait and 

balance performance, as well as in the questionnaire scores, would occur between 

the first and second study visit. Indeed, three weeks of gait and balance training 

positively influenced gait and balance performance: Comparable improvements were 

found for all three gait analysis systems in gait parameters and less pronounced 

improvements were found in balance parameters. However, no improvement was 

found for the questionnaire scores. To ensure that the improvement is indeed the 

effect of the training and not a test-retest effect, a further study including a control 

group which does not take part in a training intervention is required.  

For future analyses, the number of comparable gait and balance variables could be 

increased to get a more detailed overview of reference values of healthy adults and 

to compare these values to patient data (e.g. patients with movement disorders). Ellis 

et al. (2015) also suggest that many more consecutive steps are required to reliably 

detect differences in gait performance, i.e. approximately 100 steps or more. This is 

not possible when using force plates with a limited length, but seems to be an 

interesting set-up option for further smartphone-based analyses. 
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7 Supplementary Material 

7.1 Training Protocol 

Unit Content of the training 

1 Starts in a sitting position on a stable chair. Explanation and execution of the 
therapeutic sit: Knees and feet are about hip width apart, feet are below the 
knees and body posture is upright. Warm-up and strength training of the 
joints: Ankle joint (flexion and extension, single-legged and double-legged, 
alternating with increasing speed), knee joint (flexion and extension), hip joint 
(flexion and extension with increasing speed, adduction and abduction, raising 
one or both legs). More demanding: Using a Thera band (elastic band)/loop or 
a Swiss ball (exercise ball) to sit on.  

2 Starts in a sitting position on a stable chair, voluntarily an additional air pad or 
blanket can be put on the surface to increase the difficulty. Tasks from the first 
unit are repeated. New tasks: Raising both legs (core strength and balance), 
moving a ball (or e.g. bottle of water/...) from side to side, circling the ball 
around the knees and around the body, throwing and catching the ball in 
different ways (core stability, coordination).  

3 Starts in a sitting position on a stable chair, voluntarily an additional air pad or 
blanket can be put on the surface. Tasks from the first unit are repeated 
shortly. Coordination training: Alternating foot tapping with different speed, 
combined with alternating hand flexion and extension. Rabbit and Hunter (on 
one hand the index and middle finger are extended, like 
a “peace” sign or like the ears of a rabbit, on the other 
hand, thumb and index finger are extended, like a gun. 
The two signs shall be switched between the two hands 
as fast as possible, with the gun always pointing at the 
rabbit), finger tapping tasks (tip of the thumb touches 
the tips of each other finger of one hand, back and forth, the other hand 
performs the same task in the reverse way). Demonstration and execution of 
different stance variations. Exercises with the Thera band in those stances 
(strength and balance).  

4 Starts in a standing position, preferably barefoot on a solid ground. Repetition 
of the stance variations. Exercises with the Thera band in those stances, 
increased difficulty by performing one-sided exercises (strength and balance). 
Stance variations with eyes closed (balance) and with core rotations (strength 
and balance). Preparation for single leg stance: Weight distribution towards 
one leg, other leg moves on the ground (balance).  

5 Starts in a standing position, preferably barefoot on a solid ground. Extension 
of stance forms with exercises: Same tasks in more demanding stances (e.g. 
tandem stance), gaze follows the arms while moving them (strength, balance). 
Preparation for single leg stance: Weight distribution towards one leg, other 
leg leaves the ground and moves in different directions (balance). Single leg 
stance: Foot floats above the ground, moves back and forth / sideways, foot is 
at the knee, then moves, arms are then crossed behind the back while moving 
the feet.  
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Unit Content of the training 

6 Starts in a standing position, preferably barefoot on a solid 
ground. Repetition of the single leg stance exercises. Single leg 
stance with a threefold right angle: Hip joint, knee joint, ankle 
joint and with a swinging leg (balance). Normal gait: Conscious 
rolling motion of the feet and stable arch of foot. Backward gait. 
Gait on the heels and gait on the toes, both forwards and 
backwards (gait, coordination).  

7 Starts in a standing position, preferably barefoot on a solid ground. Repetition 
of different forms of gait. Gait on the medial and lateral foot edge. Dynamic 
gait (exaggerated push-up at toe-off phase). Gait with short breaks in the 
single leg stance phases, forwards and backwards, then additionally raising to 
the toes in the single leg stance phases as a progression. Sideward gait, 
sideward gait with cross-over steps. Tandem gait forward and backwards. 
Gait forms with eyes closed (gait, coordination).   

8 Starts in a standing position, preferably barefoot on a 
solid ground. Repetition of tandem gait, eyes open and 
closed. Sideward gait in a more tucked position and with 
a Thera band/loop around the knees, lunges with careful 
attention to the leg axis (strength, gait). Single leg 
stance: Threefold right angle, circling a ball / water bottle 
around the body and around the upper leg, improving 
from fixed gaze to moving gaze (balance).  

9 Starts in a standing position, preferably barefoot on a solid ground. Single leg 
stance exercises: Gaze moves through the room, gaze follows the hand while 
hand moves from the front to the side of the body. Single leg stance on 
unstable ground (e.g. air pad, blanket): normal stance, dynamic stance with 
upper leg moving, ankle joint flexion and extension (balance). Foot mobility, 
stretching of hip flexor and leg extensor (mobility).  

10 Starts in a standing position, preferably barefoot on a solid ground. Repetition 
of single leg stance exercises. Increasing difficulty by increasing movement 
amplitudes (range of motion) and by combining exercises with an unstable 
ground. Rabbit and Hunter task and finger tapping task while standing in a 
tandem stance. Lunges with turning the body sideways, stretching of leg 
flexors (mobility).  

11 Starts in a standing position, preferably barefoot on a solid ground. Single leg 
stance, threefold right angle, legs and arms swing, head is turned sideways 
(balance, coordination). Small jumps: From stance to single leg stance, 
jumping sideways and backwards, with increasing jump distance (strength, 
balance). Stretching of calves and leg extensors, mobilization of joints.  

12 Starts in a standing position, preferably barefoot on a solid ground. Repetition 
of small jumps. Single leg jumps: forwards, backwards, with turns (strength, 
balance). Gait and running drills: normal gait forwards and backwards, ankle 
work (fast alternating rolling motion of both feet), skippings, skippings with 
coordination exercises (e.g. two times one side, one time other side).  
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7.2 Data extraction Xsens 

The data were recorded with the Xsens MVN 2020.2 software and saved in a “.mvn” 

format. Afterwards, the data were converted from the “.mvn” to a “.mvnx” format 

within the software itself, which is necessary for further data processing. Finally, a 

python script was used to extract the position of feet and pelvis from the data and to 

save it in a “time x position” data frame in a “.txt” file.  

The following script for gait tasks and balance tasks serves as an overview of feature 

extraction, in a way that makes it understandable and reproducible for outsiders.  

7.2.1 Gait Tasks 

 

  

(12-24) Data import. Data were loaded into the Anaconda Spyder software (python 

3.8) and columns were assigned to the corresponding variables. The pelvis data are 

defined as center of mass (COM) in x-direction (anterior-posterior), in y-direction 

(medial-lateral) and in z-direction (vertical). The definition of axes also applies to the 

data of the left and right foot (LeftFoot, RightFoot).  

(26-32) Visual check. Data was visualized to check it for plausibility and to avoid 

including errors. 
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Fig. 8: Output. Top left: Position of the left foot; top right: position of the right foot, bottom left: position 

of the center of mass, bottom right: position of left foot, right foot and COM over time. In all 

four plots, the x-axis describes anterior-posterior motion and the y-axis describes the medial-

lateral motion. 

 

(41-49) Data cut. The original data contains turns at the end and at the beginning 

(most anterior and most posterior point, x-axis) of each lane. As the participants 

walked on the force plate in the laboratory, they performed the turn at the same 

position after every lane, that is, right after they left the force plate. This makes it 

easy to exclude the turns from the original data and to separate the lanes from each 

other: In this approach, the first and last meter in the x-direction was first replaced by 

the value “9.999” and then subtracted from the data (in this case: COM_x). 

 

Fig. 9: The plot on the left side displays the COM position in x-direction (m) over time (s). Since the 

first and last meter have been cut out of the data, the x-position jumps to 9.999 at the 

beginning and the end of each lane. On the right side the underlying table is shown, according 

to which the time frames for each participant were manually inserted into the script. 
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This result is the output shown in Fig. 9, which is described by an example excerpt 

next to it. Both in the figure and in the table the time is given in seconds (x-axis / row 

0) and the position in x-direction in meters (y-axis / row 1). The table serves as a 

basis for splitting the original data into individual lanes. The first number in line 1 (x-

position) that is not equal to “9.999” (in this case: column 1030) corresponds to the 

starting point of the first lane. The values of the x-position then increase until “9.999” 

is reached again and thus the end of the first lane. This is repeated until all six lanes 

(normal gait and backward gait) or four lanes (tandem gait) are defined by their start 

and end indices.  

 

It follows that each axis is divided into six (four) lanes for COM and for feet, which are 

used for further analysis.  

 

(115-120) Visual check. Again, COM, left foot (LF) and right foot (RF) positions are 

checked visually for inconsistencies (see figure x, which shows a single lane as an 

example).  

 

Fig. 10 shows the left foot, right foot and COM, respectively. In all three plots, the position in the x-

direction is shown on the x-axis and the position in the y-direction is shown on the y-axis. 

As can be seen in Fig. 10, the sensors of the Xsens system are subject to deviation, 

so that after a few lanes of walking the direction of travel does not perfectly match the 

direction of the x-axis anymore. However, to obtain the most accurate results, the 

data is rotated to maximize the conformance between the walking direction and the x-

axis.  
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(132-138) Data rotation. In order to achieve this, at first a straight line is laid through 

the walking path. To start with, an array is created, that comprises both x- and y-data 

of the corresponding lane. From that array, only the first and last data point ([:,0] 

accesses the first data point and [:,-1] accesses the last data point) are copied into a 

new array (Line_Lane1), which mainly serves the visualization of that calculation (see 

blue line in Fig. 11). The actual line data is then given in LL1, which is the subtraction 

of start and end position.  

 

Fig. 11: The COM position is displayed again in orange (x-position on the x-axis, y-position on the y-

axis). Additionally, the blue line represents the line that was laid through the data for 

calculation of the angle between the actual path and the x-axis. 

 

(141-152) Data rotation. Afterwards, the angle between the actual x-axis (a) and the 

calculated line (b = LL1), which describes the actual walking direction of the 

participant, is calculated with the linear algebra module of NumPy 

(https://numpy.org/doc/stable/reference/routines.linalg.html).  

https://numpy.org/doc/stable/reference/routines.linalg.html
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(156-168) Data rotation. With the angle calculated beforehand (deg), a rotation 

matrix is now created to rotate the original vector towards the x-axis 

(https://scipython.com/book/chapter-6-numpy/examples/creating-a-rotation-matrix-in-

numpy/). In a second step, x- and y-axis are transposed. This is to make it easier for 

people looking at these figures to visualize the direction of walking of the participant 

(see Fig. 12). This part of the script is repeated for the left and the right foot and for 

each lane separately (not shown).  

(186-190) The final matrix of, in this case, the COM is now created by multiplying the 

original matrix with the rotation matrix (xrotated = cos(α) * x - sin(α) * y; yrotated = sin(α) * 

x + cos(α) * y; with x and y being the variables of the original data). Original and new 

data are plotted and checked for errors. The new walking path should match the x-

axis as close as possible (see orange line in figure x, as x- and y- axis have been 

transposed, it matches the y-axis). Again, this is repeated for the left and the right 

foot and for each lane separately. 

 

Fig. 12 displays how the rotation matrix works (left plot): The blue line again displays the COM 

position, only this time with the x-position on the y-axis and the y-position on the x-axis, for 

better visualization of the gait path. The orange line is the corrected path after multiplying the 

data with the rotation matrix. 

https://scipython.com/book/chapter-6-numpy/examples/creating-a-rotation-matrix-in-numpy/
https://scipython.com/book/chapter-6-numpy/examples/creating-a-rotation-matrix-in-numpy/
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(541-552) Inter-step time. To calculate the time between two consecutive steps of 

the participant, the vertical component of the COM was used. As the COM moves up 

and down in cyclic movements (see Fig. 13, left), it is easy to use its peaks as 

markers for a step cycle. Usually and according to definition, one step starts with the 

heel contact of the first foot and ends with the heel contact of the other foot. 

However, the length and thus time of a step cycle remains the same, no matter at 

which phase of the cycle the marker is set, as soon as start and end position are set 

at the same phase of the step cycle. The height to find the peaks (line 542) was 

adapted for each participant by visually checking the output plots. For more 

ambiguous curves, as some of the tandem gait curves (see Fig. 1Fig. 13, right) an 

additional information was added to the script (“width=9”), to define a minimum 

distance between two consecutive peaks. 

 

Fig. 13: shows the COM position in z-direction (vertical direction, y-axis) over time (s) in normal gait 

(left plot) and for a shaky tandem gait (right plot). In most of the cases, peaks were easy to 

detect, as on the left side. 
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(560-566, 680-681) Inter-step time. The time in seconds between two steps (inter-

step time) was then calculated by subtracting the times of two neighboring peaks, 

respectively. This was repeated until reaching the last peak of one lane. All inter-step 

times of one lane were collected in one array (e.g. InterStepTime_L1) and the 

average inter-step time of that lane was defined. Later on, the average inter-step time 

in seconds of all six lanes (or four lanes, for the tandem gait) was calculated.  

(683) Step frequency. The step frequency, that is, how many steps the participant 

performed per second, was calculated by dividing one by the average inter-step time. 

 

(695-703) Left-Right-Variance. In this step, the variance across all y-values (medial-

lateral) was calculated for each lane separately and then averaged across all lanes. 

The less the COM of the participant deviates from the x-axis, the closer the value is 

to zero. 

 

(710-715) Velocity. Velocity was calculated separately for each lane by subtracting 

the first from the last data point for both position and time, and then dividing position 

by time. After that, the average velocity was calculated.  
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(722-732, 879-880) Stride length. One stride, which is a cycle of two steps, starts by 

definition with the heel contact of one foot and ends with the heel contact of the same 

foot. To calculate the stride length in meters, the vertical axis of one foot (e.g. left 

foot, Fig. 14) was plotted and its peaks were marked and extracted. The absolute 

value of the difference of position (x-axis) was added to an array, which in the end 

contained the values of all lanes and both feet. Out of these collected values, the 

average stride length and the variation of the stride length were calculated. The 

height to find the peaks (line 722) of the foot position was adapted for each 

participant by visually checking the output plots. 

 

Fig. 14 displays the path of one foot in z-direction (vertical direction), including the z-position in meters 

on the y-axis and the data frames on the x-axis. 

 

 

 

(892-900, 913-916, 1048-1049) Step width. To calculate how wide the steps of the 

participants were, the vertical z-axis and the y-axis (medial-lateral displacement) of 

the feet were considered. The time frame with the lowest foot position of each foot 

(mid-stance phase, Suppa et al., 2020) is marked by searching for the minima in z-

direction (vertical axis, see line 894). Its position in y-direction at the same time frame 

(line 899) is used to determine the distance between left and right foot (line 915). This 

is repeated for all lanes and added up to one array. Height and width (line 894) are 
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adapted individually for each participant. Finally, an average value and the variation 

of the step width is calculated. 

 

 

(1077-1080, 1102-1109) Foot elevation. Finally, the maximum elevation of each foot 

in every step is calculated by considering the z-axis (vertical direction). Therefore, all 

peaks of a foot are marked and its values are added up in one array. This is done 

separately for the left and the right foot and for each lane. The actual elevation height 

is determined by subtracting the minimum height of each lane from the mean height, 

as the sensor is on top of the foot and the participants feet have different shapes and 

heights.  

 

All variables were then saved in an excel format. 

7.2.2 Balance Tasks 

Data import was performed in a similar way as described for the gait tasks and data 

were also checked visually for plausibility.  

 

Fig. 15: Position of the left foot (green), right foot (blue) and center of mass (orange). The y-position in 

meters is given on the y-axis and the time in seconds on the x-axis.  
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(44-57) Data cut. For each participant the time span for analysis was selected in a 

way that movements in the beginning or at the end of the balance task were 

excluded. Analysis was performed on the COM data only, however, left and right foot 

data were still included and shown for better visualization. 

 

Fig. 16: Position of left foot (blue), right foot (orange) and center of mass (green) during the narrow 

stance with eyes closed (left) and eyes open (right). Position in x-direction is given on the x-

axis, position in y-direction is given on the y-axis.  

 



7 Supplementary Material  7.2 Data extraction Xsens 

65 

(69-84) Path. In the first step of the analysis, the total path length that was travelled 

by the COM of the participant was calculated 

(https://stackoverflow.com/questions/20773612/python-compute-the-length-of-a-path-

for-a-moving-object). For the length of the dataset, that was cut one step earlier, the 

path in both x-direction (anterior-posterior) and y-direction (medial-lateral) was added 

up. The total path length in meter was then divided by the time of analysis, to get 

comparable data across all participants (Path_per_second). This at the same time 

describes a velocity, i.e. how many millimeters the participant travelled per second 

(line 84).  

 

(90-95) Ellipse. For a second step, the area of an ellipse around the COM path was 

calculated by simply multiplying the anteroposterior sway and the mediolateral sway 

with pi. This resulted in an ellipse enclosing all data points and given with an area 

in mm2.  

 

https://stackoverflow.com/questions/20773612/python-compute-the-length-of-a-path-for-a-moving-object
https://stackoverflow.com/questions/20773612/python-compute-the-length-of-a-path-for-a-moving-object
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