001     903293
005     20240709082057.0
024 7 _ |a 10.1016/j.ijhydene.2021.07.119
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a 2128/29444
|2 Handle
024 7 _ |a WOS:000693237100008
|2 WOS
037 _ _ |a FZJ-2021-04989
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Dürr, S.
|0 P:(DE-Juel1)132580
|b 0
|u fzj
245 _ _ |a Experimental determination of the hydrogenation/dehydrogenation - Equilibrium of the LOHC system H0/H18-dibenzyltoluene
260 _ _ |a New York, NY [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639145703_19840
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Liquid organic hydrogen carrier (LOHC) systems store hydrogen through a catalystpromotedexothermal hydrogenation reaction and release hydrogen through an endothermalcatalytic dehydrogenation reaction. At a given pressure and temperature theamount of releasable hydrogen depends on the reaction equilibrium of the hydrogenation/dehydrogenation reaction. Thus, the equilibrium composition of a given LOHC system isone of the key parameters for the reactor and process design of hydrogen storage andrelease units. Currently, LOHC equilibrium data are calculated on the basis of calorimetricdata of selected, pure hydrogen-lean and hydrogen-rich LOHC compounds. Yet, real reactionsystems comprise a variety of isomers, their respective partially hydrogenatedspecies as well as by-products formed during multiple hydrogenation/dehydrogenationcycles. Therefore, our study focuses on an empirical approach to describe the temperatureand pressure dependency of the hydrogenation equilibrium of the LOHC system H0/H18-DBT under real life experimental conditions. Because reliable measurements of the degree of hydrogenation (DoH) play a vital role in this context, we describe in thiscontribution two novel methods of DoH determination for LOHC systems based on 13C NMRand GC-FID measurements.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zilm, S.
|0 P:(DE-Juel1)179242
|b 1
700 1 _ |a Geißelbrecht, M.
|0 P:(DE-Juel1)180645
|b 2
700 1 _ |a Müller, Karsten
|0 P:(DE-Juel1)177792
|b 3
700 1 _ |a Preuster, P.
|0 P:(DE-Juel1)174308
|b 4
700 1 _ |a Bösmann, A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wasserscheid, P.
|0 P:(DE-Juel1)162305
|b 6
|e Corresponding author
773 _ _ |a 10.1016/j.ijhydene.2021.07.119
|g Vol. 46, no. 64, p. 32583 - 32594
|0 PERI:(DE-600)1484487-4
|n 64
|p 32583 - 32594
|t International journal of hydrogen energy
|v 46
|y 2021
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/903293/files/Experimental%20determination%20of%20the%20hydrogenation%20dehydrogenation_Equilibrium%20of%20the%20LOHC%20system%20H0%20H18-dibenzyltoluene.docx
|y Published on 2021-08-06. Available in OpenAccess from 2023-08-06.
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:903293
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132580
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180645
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)174308
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)162305
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21