000903294 001__ 903294 000903294 005__ 20240712113047.0 000903294 0247_ $$2doi$$a10.1002/cssc.202102220 000903294 0247_ $$2ISSN$$a1864-5631 000903294 0247_ $$2ISSN$$a1864-564X 000903294 0247_ $$2Handle$$a2128/30810 000903294 0247_ $$2altmetric$$aaltmetric:118062349 000903294 0247_ $$2pmid$$apmid:34784118 000903294 0247_ $$2WOS$$aWOS:000725309600001 000903294 037__ $$aFZJ-2021-04990 000903294 082__ $$a540 000903294 1001_ $$00000-0002-4762-5273$$aReissig, Friederike$$b0 000903294 245__ $$aSynergistic Effects of Surface Coating and Bulk Doping in Ni‐Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for High‐Energy Lithium Ion Batteries 000903294 260__ $$aWeinheim$$bWiley-VCH$$c2022 000903294 3367_ $$2DRIVER$$aarticle 000903294 3367_ $$2DataCite$$aOutput Types/Journal article 000903294 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1646142036_3718 000903294 3367_ $$2BibTeX$$aARTICLE 000903294 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000903294 3367_ $$00$$2EndNote$$aJournal Article 000903294 520__ $$aNi-rich layered oxide cathodes are promising candidates to satisfy the increasing energy demand of lithium-ion batteries for automotive applications. Thermal and cycling stability issues originating from increasing Ni contents are addressed by mitigation strategies such as elemental bulk substitution (“doping”) and surface coating. Although both approaches separately benefit the cycling stability, there are only few reports investigating the combination of two of such approaches. Herein, the combination of Zr as common dopant in commercial materials with effective Li2WO4 and WO3 coatings was investigated with special focus on the impact of different material processing conditions on structural parameters and electrochemical performance in nickel-cobalt-manganese (NCM) || graphite cells. Results indicated that the Zr4+ dopant diffusing to the surface during annealing improved the electrochemical performance compared to samples without additional coatings. This work emphasizes the importance to not only investigate the effect of individual dopants or coatings but also the influences between both. 000903294 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0 000903294 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000903294 7001_ $$0P:(DE-HGF)0$$aLange, Martin Alexander$$b1 000903294 7001_ $$0P:(DE-HGF)0$$aHaneke, Lukas$$b2 000903294 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b3 000903294 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang$$b4$$ufzj 000903294 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5 000903294 7001_ $$00000-0002-5670-0327$$aSchmuch, Richard$$b6$$eCorresponding author 000903294 7001_ $$00000-0001-7053-3986$$aGomez-Martin, Aurora$$b7$$eCorresponding author 000903294 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.202102220$$gp. cssc.202102220$$n4$$pe202102220$$tChemSusChem$$v15$$x1864-5631$$y2022 000903294 8564_ $$uhttps://juser.fz-juelich.de/record/903294/files/ChemSusChem%20-%202021%20-%20Reissig%20-%20Synergistic%20Effects%20of%20Surface%20Coating%20and%20Bulk%20Doping%20in%20Ni%E2%80%90Rich%20Lithium%20Nickel%20Cobalt.pdf$$yOpenAccess 000903294 8564_ $$uhttps://juser.fz-juelich.de/record/903294/files/F.Reissig_Manuscript_R1.pdf$$yOpenAccess 000903294 8564_ $$uhttps://juser.fz-juelich.de/record/903294/files/F.Reissig_SI_R1.pdf$$yOpenAccess 000903294 909CO $$ooai:juser.fz-juelich.de:903294$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000903294 9101_ $$0I:(DE-588b)5008462-8$$60000-0002-4762-5273$$aForschungszentrum Jülich$$b0$$kFZJ 000903294 9101_ $$0I:(DE-HGF)0$$60000-0002-4762-5273$$a IEK-12$$b0 000903294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b4$$kFZJ 000903294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ 000903294 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 000903294 9141_ $$y2022 000903294 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000903294 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger 000903294 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29 000903294 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000903294 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29 000903294 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25 000903294 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25 000903294 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25 000903294 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25 000903294 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25 000903294 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMSUSCHEM : 2021$$d2022-11-25 000903294 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMSUSCHEM : 2021$$d2022-11-25 000903294 920__ $$lyes 000903294 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 000903294 9801_ $$aFullTexts 000903294 980__ $$ajournal 000903294 980__ $$aVDB 000903294 980__ $$aUNRESTRICTED 000903294 980__ $$aI:(DE-Juel1)IEK-12-20141217 000903294 981__ $$aI:(DE-Juel1)IMD-4-20141217