001     903294
005     20240712113047.0
024 7 _ |a 10.1002/cssc.202102220
|2 doi
024 7 _ |a 1864-5631
|2 ISSN
024 7 _ |a 1864-564X
|2 ISSN
024 7 _ |a 2128/30810
|2 Handle
024 7 _ |a altmetric:118062349
|2 altmetric
024 7 _ |a pmid:34784118
|2 pmid
024 7 _ |a WOS:000725309600001
|2 WOS
037 _ _ |a FZJ-2021-04990
082 _ _ |a 540
100 1 _ |a Reissig, Friederike
|0 0000-0002-4762-5273
|b 0
245 _ _ |a Synergistic Effects of Surface Coating and Bulk Doping in Ni‐Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for High‐Energy Lithium Ion Batteries
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1646142036_3718
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ni-rich layered oxide cathodes are promising candidates to satisfy the increasing energy demand of lithium-ion batteries for automotive applications. Thermal and cycling stability issues originating from increasing Ni contents are addressed by mitigation strategies such as elemental bulk substitution (“doping”) and surface coating. Although both approaches separately benefit the cycling stability, there are only few reports investigating the combination of two of such approaches. Herein, the combination of Zr as common dopant in commercial materials with effective Li2WO4 and WO3 coatings was investigated with special focus on the impact of different material processing conditions on structural parameters and electrochemical performance in nickel-cobalt-manganese (NCM) || graphite cells. Results indicated that the Zr4+ dopant diffusing to the surface during annealing improved the electrochemical performance compared to samples without additional coatings. This work emphasizes the importance to not only investigate the effect of individual dopants or coatings but also the influences between both.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lange, Martin Alexander
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Haneke, Lukas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Placke, Tobias
|0 0000-0002-2097-5193
|b 3
700 1 _ |a Zeier, Wolfgang
|0 P:(DE-Juel1)184735
|b 4
|u fzj
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 5
700 1 _ |a Schmuch, Richard
|0 0000-0002-5670-0327
|b 6
|e Corresponding author
700 1 _ |a Gomez-Martin, Aurora
|0 0000-0001-7053-3986
|b 7
|e Corresponding author
773 _ _ |a 10.1002/cssc.202102220
|g p. cssc.202102220
|0 PERI:(DE-600)2411405-4
|n 4
|p e202102220
|t ChemSusChem
|v 15
|y 2022
|x 1864-5631
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/903294/files/ChemSusChem%20-%202021%20-%20Reissig%20-%20Synergistic%20Effects%20of%20Surface%20Coating%20and%20Bulk%20Doping%20in%20Ni%E2%80%90Rich%20Lithium%20Nickel%20Cobalt.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/903294/files/F.Reissig_Manuscript_R1.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/903294/files/F.Reissig_SI_R1.pdf
909 C O |o oai:juser.fz-juelich.de:903294
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 0000-0002-4762-5273
910 1 _ |a IEK-12
|0 I:(DE-HGF)0
|b 0
|6 0000-0002-4762-5273
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)184735
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMSUSCHEM : 2021
|d 2022-11-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEMSUSCHEM : 2021
|d 2022-11-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21