000903307 001__ 903307
000903307 005__ 20240712113048.0
000903307 0247_ $$2doi$$a10.1002/smll.202104986
000903307 0247_ $$2ISSN$$a1613-6810
000903307 0247_ $$2ISSN$$a1613-6829
000903307 0247_ $$2Handle$$a2128/30716
000903307 0247_ $$2altmetric$$aaltmetric:118013701
000903307 0247_ $$2pmid$$apmid:34850544
000903307 0247_ $$2WOS$$aWOS:000724122200001
000903307 037__ $$aFZJ-2021-05003
000903307 082__ $$a540
000903307 1001_ $$0P:(DE-Juel1)173731$$aHou, Xu$$b0$$ufzj
000903307 245__ $$aSimultaneous Formation of Interphases on both Positive and Negative Electrodes in High‐Voltage Aqueous Lithium‐Ion Batteries
000903307 260__ $$aWeinheim$$bWiley-VCH$$c2022
000903307 3367_ $$2DRIVER$$aarticle
000903307 3367_ $$2DataCite$$aOutput Types/Journal article
000903307 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645092397_27293
000903307 3367_ $$2BibTeX$$aARTICLE
000903307 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903307 3367_ $$00$$2EndNote$$aJournal Article
000903307 520__ $$aThe formation of solid-electrolyte interphase (SEI) in “water-in-salt” electrolyte (WiSE) expands the electrochemical stability window of aqueous electrolytes beyond 3.0 V. However, the parasitic hydrogen evolution reaction that drives anode corrosion, cracking, and the subsequent reformation of SEI still occurs, compromising long-term cycling performance of the batteries. To improve cycling stability, an unsaturated monomer acrylamide (AM) is introduced as an electrolyte additive, whose presence in WiSE reduces its viscosity and improves ionic conductivity. Upon charging, AM electropolymerizes into polyacrylamide, as confirmed both experimentally and computationally. The in situ polymer constitutes effective protection layers at both anode and cathode surfaces, and enables LiMn2O4||L-TiO2 full cells with high specific capacity (157 mAh g−1 at 1 C), long-term cycling stability (80% capacity retention within 200 cycles at 1 C), and high rate capability (79 mAh g−1 at 30 C). The in situ electropolymerization found in this work provides an alternative and highly effective strategy to design protective interphases at the negative and positive electrodes for high-voltage aqueous batteries of lithium-ion or beyond.
000903307 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000903307 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903307 7001_ $$0P:(DE-HGF)0$$aPollard, Travis P.$$b1
000903307 7001_ $$0P:(DE-HGF)0$$aZhao, Wenguang$$b2
000903307 7001_ $$0P:(DE-Juel1)169319$$aHe, Xin$$b3$$eCorresponding author
000903307 7001_ $$0P:(DE-Juel1)176763$$aJu, Xiaokang$$b4
000903307 7001_ $$0P:(DE-Juel1)168392$$aWang, Jun$$b5
000903307 7001_ $$0P:(DE-HGF)0$$aDu, Leilei$$b6
000903307 7001_ $$0P:(DE-Juel1)166311$$aPaillard, Elie$$b7
000903307 7001_ $$0P:(DE-HGF)0$$aLin, Hai$$b8
000903307 7001_ $$0P:(DE-HGF)0$$aXu, Kang$$b9
000903307 7001_ $$0P:(DE-HGF)0$$aBorodin, Oleg$$b10$$eCorresponding author
000903307 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b11$$ufzj
000903307 7001_ $$0P:(DE-Juel1)174577$$aLi, Jie$$b12$$eCorresponding author$$ufzj
000903307 773__ $$0PERI:(DE-600)2168935-0$$a10.1002/smll.202104986$$gp. 2104986 -$$n5$$p2104986 -$$tSmall$$v18$$x1613-6810$$y2022
000903307 8564_ $$uhttps://juser.fz-juelich.de/record/903307/files/Small%20-%202021%20-%20Hou%20-%20Simultaneous%20Formation%20of%20Interphases%20on%20both%20Positive%20and%20Negative%20Electrodes%20in%20High%E2%80%90Voltage%20Aqueous.pdf$$yOpenAccess
000903307 909CO $$ooai:juser.fz-juelich.de:903307$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173731$$aForschungszentrum Jülich$$b0$$kFZJ
000903307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b11$$kFZJ
000903307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174577$$aForschungszentrum Jülich$$b12$$kFZJ
000903307 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000903307 9141_ $$y2022
000903307 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000903307 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000903307 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000903307 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903307 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000903307 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL : 2021$$d2022-11-15
000903307 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000903307 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000903307 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000903307 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000903307 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000903307 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bSMALL : 2021$$d2022-11-15
000903307 920__ $$lyes
000903307 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000903307 9801_ $$aFullTexts
000903307 980__ $$ajournal
000903307 980__ $$aVDB
000903307 980__ $$aI:(DE-Juel1)IEK-12-20141217
000903307 980__ $$aUNRESTRICTED
000903307 981__ $$aI:(DE-Juel1)IMD-4-20141217