000903309 001__ 903309
000903309 005__ 20240712113048.0
000903309 0247_ $$2doi$$a10.1002/ente.202100871
000903309 0247_ $$2ISSN$$a2194-4288
000903309 0247_ $$2ISSN$$a2194-4296
000903309 0247_ $$2Handle$$a2128/30717
000903309 0247_ $$2altmetric$$aaltmetric:120417743
000903309 0247_ $$2WOS$$aWOS:000726293100001
000903309 037__ $$aFZJ-2021-05004
000903309 082__ $$a620
000903309 1001_ $$00000-0001-7673-8421$$aKolesnikov, Aleksei$$b0
000903309 245__ $$aLithium Powder Synthesis and Preparation of Powder‐Based Composite Electrodes for Application in Lithium Metal Batteries
000903309 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2022
000903309 3367_ $$2DRIVER$$aarticle
000903309 3367_ $$2DataCite$$aOutput Types/Journal article
000903309 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645092507_26187
000903309 3367_ $$2BibTeX$$aARTICLE
000903309 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903309 3367_ $$00$$2EndNote$$aJournal Article
000903309 520__ $$aThe electrochemical performance of lithium metal batteries is affected by many factors, among which the negative electrode is crucial. Although much of the research is focused on lithium metal electrodes from metallic foils, lithium metal powder can also provide several advantages. Herein, the synthesis of lithium metal powder (Lip) using a droplet emulsion technique is described in detail and the scientific background of the method is provided. Furthermore, the electrochemical performance of the composite Lip-based electrodes prepared with conductive carbon additive (Super C65) via the electrode paste-casting method is reported. The results indicate that under the same material loading, the composite Lip-based electrodes can provide at least twice the practical electrode capacity of pure Lip electrodes and with lower overpotentials, as shown in symmetric Li||Li cells. Full cells assembled with an NMC622 cathode and a composite Lip-based electrode are cycled at least for 100 cycles and show improved cycling performance as compared with the full cells assembled with pure Lip electrodes. In addition, the results also conclude that there are four different types of charge storage mechanisms in these composite Lip-based electrodes. These occurring mechanisms should be considered when engineering lithium metal electrodes with various designs.
000903309 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000903309 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903309 7001_ $$0P:(DE-HGF)0$$aWulfers, Tristan$$b1
000903309 7001_ $$00000-0001-7852-4064$$aKolek, Martin$$b2
000903309 7001_ $$0P:(DE-Juel1)180777$$aBieker, Peter$$b3
000903309 7001_ $$00000-0002-2654-9355$$aStan, Marian Cristian$$b4$$eCorresponding author
000903309 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5$$eCorresponding author$$ufzj
000903309 773__ $$0PERI:(DE-600)2700412-0$$a10.1002/ente.202100871$$gp. 2100871 -$$n2$$p2100871 -$$tEnergy technology$$v10$$x2194-4288$$y2022
000903309 8564_ $$uhttps://juser.fz-juelich.de/record/903309/files/Energy%20Tech%20-%202021%20-%20Kolesnikov%20-%20Lithium%20Powder%20Synthesis%20and%20Preparation%20of%20Powder%E2%80%90Based%20Composite%20Electrodes%20for.pdf$$yOpenAccess
000903309 909CO $$ooai:juser.fz-juelich.de:903309$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180777$$aForschungszentrum Jülich$$b3$$kFZJ
000903309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ
000903309 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000903309 9141_ $$y2022
000903309 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903309 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000903309 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000903309 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903309 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000903309 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY TECHNOL-GER : 2021$$d2022-11-12
000903309 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000903309 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000903309 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000903309 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000903309 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000903309 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-12
000903309 920__ $$lyes
000903309 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000903309 9801_ $$aFullTexts
000903309 980__ $$ajournal
000903309 980__ $$aVDB
000903309 980__ $$aUNRESTRICTED
000903309 980__ $$aI:(DE-Juel1)IEK-12-20141217
000903309 981__ $$aI:(DE-Juel1)IMD-4-20141217