001     903309
005     20240712113048.0
024 7 _ |a 10.1002/ente.202100871
|2 doi
024 7 _ |a 2194-4288
|2 ISSN
024 7 _ |a 2194-4296
|2 ISSN
024 7 _ |a 2128/30717
|2 Handle
024 7 _ |a altmetric:120417743
|2 altmetric
024 7 _ |a WOS:000726293100001
|2 WOS
037 _ _ |a FZJ-2021-05004
082 _ _ |a 620
100 1 _ |a Kolesnikov, Aleksei
|0 0000-0001-7673-8421
|b 0
245 _ _ |a Lithium Powder Synthesis and Preparation of Powder‐Based Composite Electrodes for Application in Lithium Metal Batteries
260 _ _ |a Weinheim [u.a.]
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1645092507_26187
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The electrochemical performance of lithium metal batteries is affected by many factors, among which the negative electrode is crucial. Although much of the research is focused on lithium metal electrodes from metallic foils, lithium metal powder can also provide several advantages. Herein, the synthesis of lithium metal powder (Lip) using a droplet emulsion technique is described in detail and the scientific background of the method is provided. Furthermore, the electrochemical performance of the composite Lip-based electrodes prepared with conductive carbon additive (Super C65) via the electrode paste-casting method is reported. The results indicate that under the same material loading, the composite Lip-based electrodes can provide at least twice the practical electrode capacity of pure Lip electrodes and with lower overpotentials, as shown in symmetric Li||Li cells. Full cells assembled with an NMC622 cathode and a composite Lip-based electrode are cycled at least for 100 cycles and show improved cycling performance as compared with the full cells assembled with pure Lip electrodes. In addition, the results also conclude that there are four different types of charge storage mechanisms in these composite Lip-based electrodes. These occurring mechanisms should be considered when engineering lithium metal electrodes with various designs.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wulfers, Tristan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kolek, Martin
|0 0000-0001-7852-4064
|b 2
700 1 _ |a Bieker, Peter
|0 P:(DE-Juel1)180777
|b 3
700 1 _ |a Stan, Marian Cristian
|0 0000-0002-2654-9355
|b 4
|e Corresponding author
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/ente.202100871
|g p. 2100871 -
|0 PERI:(DE-600)2700412-0
|n 2
|p 2100871 -
|t Energy technology
|v 10
|y 2022
|x 2194-4288
856 4 _ |u https://juser.fz-juelich.de/record/903309/files/Energy%20Tech%20-%202021%20-%20Kolesnikov%20-%20Lithium%20Powder%20Synthesis%20and%20Preparation%20of%20Powder%E2%80%90Based%20Composite%20Electrodes%20for.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903309
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY TECHNOL-GER : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21