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Abstract

anaklasis constitutes a set of open-source Python scripts that facilitate a range of

specular neutron and x-ray reflectivity calculations, involving the generation of theo-

retical curves and the comparison/fit of interfacial model reflectivity against experi-

mental datasets. The primary focus of the software is twofold. From one side to offer a

more natural framework for model definition, requiring minimum coding literacy and

on the other hand, to include advanced analysis methods that have been proposed

in recent works. Particular attention is given in the ability to co-refine reflectivity

data and also to the estimation of model-parameter uncertainty and covariance using

Bootstrap analysis and Markov Chain Monte Carlo sampling. The compactness and

simplicity of model definition together with the streamlined analysis do not present

a steep learning curve for the user, an aspect that may accelerate the generation of

reproducible, easily readable and statistically accurate reports in future neutron and

x-ray reflectivity related literature.
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1. Introduction

Specular neutron and x-ray reflectometry (NR and XRR) are established experimental

techniques for the investigation of the structure of interfaces at the sub-nanometer

scale (Penfold & Thomas, 1990; Daillant & Gibaud, 2008; Born &Wolf, 2019; Heavens,

1955). XRR and NR experiments are performed by shining collimated x-ray or neutron

beams at interfaces and by registering the specularly reflected radiation intensity

(R) as a function of momentum transfer (Q = 4π sin θ/λ) where θ is the incidence

angle and λ is the wavelength of the incident radiation. Due to the relatively short

wavelengths of x-rays and cold neutrons, the presence of nanometer scale films at

interfaces gives rise to interference effects that modulate the observed reflectivity.

In this sense the experimentally measured reflectivity R(Q) can be related to the

nanometer scale features of an interface.

Depending on the nature of the used radiation, calculation of R(Q) for a given

scattering length density (sld) profile 1 is routinely performed using the Schrödinger

or Helmholtz2 equations and by applying appropriate boundary conditions of wave-

function continuity and momentum conservation or of tangential electric and magnetic

field component continuity, at layer boundaries respectively. However for the solution

of the inverse problem (i.e. recovering the sld profile from R(Q)) complications arise

mainly due to the fact that only the amplitudes of reflected electromagnetic waves or

neutron wave functions are measured during an experiment, thus leading to the loss

of phase information (phase problem).

Although several different ”model-independent” approaches for the reconstruction

of interfacial structure from reflectivity measurements have been reported, based either

on experimental (Majkrzak & Berk, 1998; Majkrzak et al., 2003; Majkrzak et al., 2000)

1Which is defined as the number density-weighted nanometer scale average of the scattering lengths
of the layer’s atomic constituents.
2Derived from Maxwell’s equations
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or numerical / stochastic methods (Pedersen, 1992; Hohage et al., 2008; Kunz et al.,

1993; Zhou & Chen, 1993; Koutsioubas, 2019), the vast majority of investigations in

the literature relies traditionally on model-dependent refinements where the interface

is modelled as a stratified medium (succession of slabs) with prior knowledge about

the system being embodied in the bounds and relations between the sld, thickness and

roughness of each slab. Driven by that, several software packages 3 have been devel-

oped addressing the needs of refining interfacial model-parameters to experimental

data, with some of them specifically adapted to different experimental scenarios, like

polarised-neutron data, contrast-variation datasets and NR / XRR co-refinement.

Notably, a subset of these programs has found widespread use by the scientific com-

munity working with NR and XRR. Among these, GenX (Björck & Andersson, 2007)

is a Python Graphical User Interface (GUI) and script-based program that permits to

the expert user the execution of elaborate refinements. Additionaly with GenX the

use of Differential Evolution minimisation has been introduced to reflectivity software.

Motofit (Nelson, 2006), RasCAL (Hughes, 2019) and Aurore (Gerelli, 2016) programs

mainly address the case of co-refining multiple solvent-contrast data from solid/liq-

uid and air/liquid interfaces. Finally refnx (Nelson & Prescott, 2019) and Refl1D

(Kienzle et al., 2011) are powerful packages that have introduced the use of Markov

Chain Monte Carlo sampling (MCMC) for investigating parameter uncertainty and

covariance.

An important aspect of reflectivity analysis software is the adopted way for the

definition of the interfacial model i.e. sld, thickness and roughness of the layers, as

also their relation with other defined parameters. GUI-based spreadsheet-like input of

parameters for each layer offers simplicity but tends to be restrictive for the definition

of elaborate layer models. On the other hand script-based model definition while being

3 For a fairly complete and historic list of developed reflectivity software one can refer to
https://www.reflectometry.org/software/
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in principle flexible, may be complicated for the new user since it requires writing

package and computer language specific code (classes, functions etc) for the definition

of layer structures and constraints between parameters. Additionally, model definition

has to address issues related to the way co-refinement of data from contrast-variation

series or different neutron-beam polarisation are handled.

In the present article we introduce a new software package under the name anakla-

sis 4 where we combine an intuitive hierarchical list-based type of input with the

flexibility typically found in script-based software, in a way that requires minimal

coding literacy from the user 5. The main novelty concerns the ability to define layer

features (sld, thickness, roughness etc) directly as symbolic mathematical expressions

involving parameters. This aspect also extends to the definition of constraints between

parameters in the form of inequalities. The resulting compact model definition simpli-

fies reporting data refinement workflows in published works, and also creates a more

natural framework for new model definition that usually represents them main time

bottleneck in analysing reflectivity data. The above-mentioned characteristics of the

package do not come at the expense of advanced features such as the ability to handle

mixed-area models, co-refine data or to estimate model-parameter uncertainty and

covariance.

Key features of anaklasis include:

• compact and flexible model definition, based on the creation of Python lists that

contain layer data as numerical values and/or as SymPy symbolic expressions

that involve parameters.

• Co-refinement of data (non-spin-flip polarized neutron data sets, contrast vari-

ation data sets) through the use of ”multi-parameters”.

4 ανάκλασις (anaklasis) in Ancient Greek stands for reflection.
5Essentially the only coding skill that is required, concerns the definition and basic manipulation of
lists in Python.
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• Straightforward constraint definitions involving expressions between model param-

eters.

• Use of the robust Differential Evolution SciPy (Virtanen et al., 2020) minimiser.

• Effortless estimation of parameter uncertainty and covariance through MCMC

or Bootstrap statistics.

• Easily readable output and ready to publish graphical output.

• Open source code under the GPL v3 licence that may be installed on all major

platforms (Windows / macOS / Linux ).

In the following sections we outline interfacial model definitions and the meth-

ods used for reflectivity calculations, data refinement and statistical analysis. Then

through a set or representative examples, we validate the abilities of the software

package and showcase that it may address the vast majority of refinement scenarios

encountered when analysing NR and XRR data.

2. Methods

anaklasis is written in Python 3 with Fortran 90 extensions for the computation-

ally intensive reflectivity calculations 6 that are performed using the Abelès matrix

method (Heavens, 1955), where layer roughness is taken into account using the Névot-

Croce approximation (Névot, L. & Croce, P., 1980). The ref submodule, contains

three callable functions, ref.calculate for generating theoretical reflectivity curves,

ref.compare for comparison of experimental data with theoretical curves and ref.fit

for refinement of experimental data against a defined model. Execution of the pro-

gram takes place by defining the interfacial model and instrumental parameters as lists

in a simple Python script and by passing them as arguments to the desired function.

6The validity of reflectivity calculations was verified against results from other programs like GenX

(Björck & Andersson, 2007), refnx (Nelson & Prescott, 2019) and Refl1D (Kienzle et al., 2011)

IUCr macros version 2.1.10: 2016/01/28



6

2.1. Model definition

Stratified-layer interfacial system definition is accomplished by the creation of a

hierarchical list structure. In order to cover the general case where not a single laterally

uniform structure is present at the interface 7, the system is defined as a list that may

contain multiple models (patches) with an associated surface coverage that contribute

incoherently to the calculated reflectivity. Note that practically in most cases a single

patch with a surface coverage equal to unity needs to be defined. Each model is a list

containing an arbitrary number of layers (slabs). In turn layers are also represented as

lists composed of 6 elements i.e real /imaginary part of the sld, thickness, roughness,

solvent volume fraction 8 and description (see SI0 for a pictorial representation).

The elements of the layer list (except from the description) can be either numer-

ical values 9 or SymPy mathematical expressions. SymPy (Meurer et al., 2017) is a

versatile package for symbolic computation which besides basic algebra, permits the

construction of expressions containing sums, derivatives and integrals and/or a variety

of functions like trigonometric, logarithmic, and exponential. Expressions may include

the layer number (from 0-fronting to (N+1)-backing medium) and an arbitrary set of

user-defined global parameters, where their values and descriptions are inserted in a

separate list. Model definition is accompanied by information related to the instrumen-

tal parameters. These include, δQ/Q resolution, incoherent background and a scale

factor in the case of non-normalised reflectivity 10. As it will be shown in the coming

sections, this mode of input coupled with symbolic math provides enough flexibility

for defining rather complex models.

7Here we refer to interfaces composed of different layer structures with lateral dimensions much larger
than the reflected beam’s coherence length.
8which applies in cases were a liquid is used as the fronting or backing medium.
9All used units are in Å for length and Å

−2
for sld.

10Despite that in anaklasis a scale factor is provided as a parameter that may be varied in data
refinements, it is in general suggested to avoid the use of ill-normalised data in model refinements,
since they may lead to a biased structural model.
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2.2. Data-refinement-related definitions

For experimental-data refinement with ref.fit, model definition is the same as when

we perform theoretical reflectivity calculations with the ref.calculate and ref.compare

functions, however we additionally need to specify which of the defined parameters

are fixed and which are free to vary within specified bounds. For this purpose two

numerical values are specified for each global parameter which represent either the

min/max bound of a uniform distribution, or the mean and standard deviation in

the case of a normally distributed parameter. An identical min/max value or a zero

standard deviation signifies a fixed parameter.

In order to treat the case of co-refinement of an arbitrary number of M input curves

(NR and/or XRR) with the same model, on top of global parameters we also introduce

multi-parameters i.e. parameters that may adopt a different value or set of bounds for

each input curve. Their definition is similar to global parameters, with the difference

being that M min/max or mean/standard deviation pairs have to be specified, each

one corresponding to an input experimental curve. Multi-parameters together with

global parameters can be used in the symbolic expressions inserted in the layer list.

Expect from the definition of expected values for specific parameters, prior knowl-

edge about the system under study might require application of constraints that need

to be expressed as inequalities involving defined global and multi-parameters. anaklasis

supports straightforward definition of such constraints as SymPy expressions. Appli-

cation of these concepts will be the matter of many of the examples in the next section.

2.3. Types of experimental data sets

In most cases, reflectivity data are stored in a 2, 3 or 4 column format correspond-

ing to Q, R(Q), δR(Q), δQ. Depending on the type of instrument, experimental error

δR(Q) and/or resolution information δQ might be missing or considered as unreliable

IUCr macros version 2.1.10: 2016/01/28
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(common for XRR). As we will see when experimental error information is missing, a

refinement can be performed without parameter uncertainty estimation. On the other

hand if δQ (halfwitdh at half maximum of a Gaussian approximation to the instru-

ment resolution function) is not present so that point-wise smearing using Gaussian

convolution can be performed, the user may define a constant δQ/Q that is applied

to the entire Q-range.

anaklasis supports the input of 2, 3 or 4 column ASCII data containing footprint-

corrected reflectivity data with Q,δQ units in Å
−1

or nm−1. In future versions of

the program we intend to support the file format that will be defined by the Open

Reflectivity Standards Organisation (ORSO)11.

2.4. Minimisation and parameter-uncertainty estimation

Depending on the type of data input (i.e. availability of δR(Q)) and also on user

choice for fitting on the linear (R(Q)) or logarithmic (log10R(Q)) scale, during data

refinement the following figure of merit (FOM) gets minimised with respect to the set

of free parameters α:

• R(Q) with errors:

FOM1 =

M
∑

i=1

wi

pi





pi
∑

j=1

[Rexp,i(Qj)−Ri(Qj, α)]
2

δR2
i,j



 (1)

• log10R(Q) with errors 12:

FOM2 =

M
∑

i=1

wi

pi





pi
∑

j=1

[log10Rexp,i(Qj)− log10Ri(Q,α)]2

[δRi,j/(ln(10)Rexp,i(Qj))]2



 (2)

• R(Q) no errors (with 1/R weighting):

11https://www.reflectometry.org
12The expression in the denominator inside the sum, comes from error propagation theory, where
δ(log10R)2 = [δR/Rln(10)]2.
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FOM3 =
M
∑

i=1

wi

pi





pi
∑

j=1

[Rexp,i(Qj)−Ri(Qj, α)]
2

Ri(Qj)2



 (3)

• log10R(Q) no errors:

FOM4 =
M
∑

i=1

wi

pi





pi
∑

j=1

[log10Rexp,i(Qj)− log10Ri(Qj , α)]
2



 (4)

where wi is the fit weight of the input curve i, and the subscript j runs over the

number of points (pi) of each data set.

Minimisation is performed using the Differential Evolution algorithm (Storn &

Price, 1997) available in SciPy (Virtanen et al., 2020) that has proven as a robust

minimiser for reflectivity data (Björck & Andersson, 2007) that avoids local minima.

After a successful minimisation and if the experimental error dR(Q) is available, there

are three ways for estimating the uncertainty of the model’s parameters:

• The fastest method, although sometimes prone to numerical instabilities, is

through a numerical estimation (numdifftools package (D’errico, 2006)) near

the FOM minimum, of the diagonal elements Hjj of the Hessian matrix which

are the second-order partial derivatives of the reduced-χ2 (χ̃2)with respect to

each free parameter αi. Then the standard deviation of the ith parameter is given

by (Gerelli, 2016)

δαj =

(

2

Hjj[χ̃2(αi)]

)1/2

(5)

• The second and quite computationally demanding option, originally implement

in the program Aurore (Gerelli, 2016) is based on the Bootstrap method, where

each experimental curve is replicated K times (K = 1000 in anaklasis) by replac-

ing each (R(Q), δR(Q)) data point with (R(Q)+ δrand, δR(Q)), where δrand is a

random number belonging to a normal distribution with a mean equal to zero

and standard deviation equal to δR(Q). Then by repeating independently the

IUCr macros version 2.1.10: 2016/01/28
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minimisation for all K generated data sets, we calculate both the mean and

standard deviation of each free parameter.

• The last and probably most efficient method, is based on the Bayesian Markov-

chain Monte Carlo (MCMC) sampling of the system that examines the posterior

probability of free parameters which is proportional to the product of the prior

probability and the likelihood. MCMC was initially implemented for reflectiv-

ity analysis in Refl1D (Kienzle et al., 2011), however here we closely follow the

methodology proposed in refnx (Nelson & Prescott, 2019). MCMC sampling

in anaklasis is performed using emcee (Foreman-Mackey et al., 2013) and by

assuming that the measurement uncertainties δR(Q) are normally distributed.

Automatically an initial run generating a 500 sample chain (i.e. sets of param-

eters compatible with data and prior information) is used for estimating the

”integrated autocorrelation time” (τ). The estimate is used for discarding 10τ

samples and for performing an actual production run for at least 60τ samples.

Note that both bootstrap and MCMC methods, except from uncertainty estimation,

give us the ability to draw a correlation corner plot of all free parameters, where

we may visually identify correlations between free parameters and also any probable

distribution multimodality or asymmetry close to imposed parameter bounds that

may indicate a required revision of the initially considered bound.

3. Reflectivity calculation and refinement examples

In order to become familiar with aspects of interfacial system definition in anaklasis,

in this section we present two examples of reflectivity calculations. Then we move

to data-refinement examples that represent frequently encountered cases in NR and

XRR related research.

IUCr macros version 2.1.10: 2016/01/28
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3.1. Two simple layers

Let us consider the relatively simple case of an XRR experiment at the air / solid

(Si) interface, with the presence of two thin layers, a 40 Å Fe and a 60 Å Au film. We

also assume a roughness for all layers equal to 3 Å. Instrumental resolution δQ/Q and

background have typical values for synchrotron XRR. The Python code for calculating

the reflectivity of such a model is presented in listing 1.

from anaklasis import ref

project=’2layers’

# We have a single uniform layer with full coverage

patches =[1.0]

# Create model list

system =[

# Re_sld Im_sld thk rough solv description

[ 0.00e-5, 0.00e-7, 0 , 3.0, 0.0, ’air’],

[ 12.4e-5, 1.28e-5, 50, 3.0, 0.0, ’Au’],

[ 5.94e-5, 7.69e-6, 40 , 3.0, 0.0, ’Fe’],

[ 2.00e-5, 4.58e-7, 0 , 0.0, 0.0, ’Si’],

]

system =[ model] # single patch(model) system

global_param = [] # no parameters

resolution =[0.001]

background = [1.0e-9]

scale = [1.0]

qmax = [0.7]

res = ref.calculate (project , resolution ,

patches , system , global_param ,

background , scale , qmax , plot =True )

Listing 1: Python code for XRR calculations of a Fe/Au film pair at the Si/air interface.

IUCr macros version 2.1.10: 2016/01/28
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XRR and sld/solvent volume fraction profiles for the Fe/Au film pair on Si.

The code together with the brief comments is almost self-explanatory in this simple

case of a system with a single model(patch) where we just fill layer lists with the

numerical values of each parameter as done in GUI-based programs. By definition the

roughness value of layer i, refers to the actual roughness between layers i and i + 1.

The corresponding graphical output fig. 1 includes the theoretical reflectivity in R(Q)

and R(Q)Q4 representation and the sld and solvent volume fraction profiles. In the

current example and since no liquid mediums are present, the solvent volume fraction

profile is not relevant. Note that if experimental data are available and we want to

compare the theoretical reflectivity and also access the χ2, we just need to specify the

input data file and call the ref.compare function at the end of the script (see related

example for a supported lipid bilayer in Supporting Information SI1).
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3.2. Nanoparticle islands on a substrate

We now pass to a more elaborate example. We consider a NR measurement at a

solid (Si) / liquid (D2O) interface that is 70% covered by mm-sized islands (patches)

of closed-packed polystyrene (PS) spherical nanoparticles having a diameter D = 150

Å. Due to the fact that the island lateral size is order of magnitudes larger than the

typical coherence length of a neutron reflectometer, the total reflectivity is given by

the weighted sum of contributions from the two models i.e. Si/D2O and Si/PS/D2O.

Model definition for Si/D2O is straightforward, however for the Si/PS/D2O system we

need an expression for the volume fraction of the nanoparticles normal to the substrate.

For spherical nanoparticles of diameter D on a substrate the volume fraction is given

by φ(z) = (4A/D2)(Dz − z2), where A is the volume fraction in the middle of the

layer and for close packing A ≈ 0.91. So for the volume fraction of the solvent (D2O)

in the nanoparticle layer we arrive at the expression:

1− φ(z) = 1−
4A

D2

(

Dz − z2
)

(6)

By slicing the nanoparticle layer in 100 slabs of D/100 thickness we construct the

model as described in the commented listing 2. The corresponding output is plotted

in fig. 2.

from anaklasis import ref

project=’nanoparticle_islands ’

# model0 Si/D2O interface

model0 =[

# Re_sld Im_sld thk rough solv decription

[ 2.07e-6, 0.0e-6, 0, 2.0, 0.0, ’Si’],

[ 6.35e-6, 0.0e-6, 0, 0.0, 1.0, ’D2O’],

]

# model1 Si/nanoparticles /D2O

# First declare just Si semi -infine layer

model1 =[

# Re_sld Im_sld thk rough solv decription

[ 2.07e-6, 0.0e-6, 0, 2.0, 0.0, ’Si’],

]

IUCr macros version 2.1.10: 2016/01/28
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# Define solvent volume fraction for each NP slice.

# Note that n is the layer number. The product of

# (n -0.5) x slice thickness gives us the middle

# z point of each slice.

expr =’1-(4*p0/p1 **2) *( p1*(n -0.5)*( p1 /100) -((n -0.5)*(p1 /100))**2) ’

# append , NP layer sliced in 100 slabs.

for i in range (100):

model1.append ([ 1.41e-6, 0.0e-6, ’p1 /100 ’ ,0.0, expr , ’NP_layer ’

])

# Finally append D2O semi -infinite backing in model1

model1.append ([ 6.35e-6, 0.0e-6, 0, 0.0, 1.0, ’D2O’])

# Define different patch coverages that should

# add up to unity

patches =[0.3 ,0.7]

system =[model0 ,model1] # note we have two models

global_param = [

[’p0’, 0.91, ’packing_constant ’],

[’p1’, 150, ’nanoparticle_diameter ’],

]

resolution =[0.05]

background = [1.0e-7]

scale = [1.0]

qmax = [0.3]

res = ref.calculate (project , resolution , patches ,

system , global_param , background , scale ,

qmax , plot =True )

Listing 2: Python code for NR calculations of PS nanoparticle islands at the Si/D2O
interface.

IUCr macros version 2.1.10: 2016/01/28
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NR and sld/solvent volume fraction profiles for PS nanoparticle islands at the
Si/D2O interface. Full lines represent Si/D2O and dotted lines Si/nanoparticles/D2O

profiles respectively.

We see that with a for loop we define the nanoparticle layer as a succession of 100

1.5 Å-thick slices while we use an algebraic expression for the solvent volume fraction

(eq. 6) that includes two defined parameters (p0 → A, p1 → D) and the integer

number n of each slice. This type of model building is particularly useful when we

work with multilayers, where we can stack multiple layer structures using a for loop.

Related examples concerning a phospholipid multilayer and a bimodal polymer brush

can be found in supporting information (SI2&3).

Our calculation did not include possible polydispersity of the nanoparticles. If we

want to take this into consideration then in anaklasis we just need to modify eq. 6 and

use an additional parameter describing nanoparticle polydispersity. Assuming that the
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nanoparticle diameter is distributed normally with a standard deviation σD, we may

rewrite the expression for the solvent volume fraction in the nanoparticle layer as:

1− φ(z) ≈
∫ D+3σD

D−3σD

f(x)Min

[

1−
4A

x2
(

xz − z2
)

, 1

]

dx (7)

where

f(x) =
1

σD
√
2π

exp

[

−
1

2

(

x−D

σD

)2
]

(8)

In Supporting Information (SI4), the code and related output for polydisperse nanopar-

ticles following eq. 7 can be found.

3.3. Polymer brush refinement

Some of the concepts of model building introduced in the last example will be used

also here for the refinement of experimental NR data from a PS (Mw=70K) polymer

brush at the quartz / d-toluene interface that have been acquired (Hiotelis et al., 2008)

at the now-decommissioned EROS time-of-flight reflectometer at LLB (Saclay). End-

grafted linear polymer chains (brushes) due to a balance between entropic and steric

interactions are expected from mean-field theory (Milner et al., 1988) to form extended

layers having a volume fraction profile of the form φ(z) = φ(0) − Czn. At sufficiently

high grafting densities the exponent n is equal to 2 (parabolic profile). Setting the

maximum brush-layer extension as L, and since φ(L) = 0, we may rewrite the above

expression as φ(z) = φ(0)[1 − (z/L)n]

Using the same line of thought as in the previous example we may approximate the

brush layer by a number of ’thin’ slices having a solvent volume fraction:

1− φ(z) = 1− φ(0)
[

1−
( z

L

)n]

(9)

Given that we want to fit the relevant experimental data, we define a set of global

parameters that are left free to vary. These are the volume fraction at z = 0 (φ(0)),

IUCr macros version 2.1.10: 2016/01/28
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the brush length (L), the exponent (n) and the thickness of a thin H2O layer that is

present at the interface. Parameters φ(0), L, n appear in the expression defining the

solvent volume fraction profile of each brush layer slab. Note that for all parameters we

assume that they have a flat prior probability (uniform) to vary within the specified

bounds, except for the thickness of the few- Å-thick water layer that is defined as a

normally distributed parameter given by its mean value and standard deviation.

from anaklasis import ref

project=’Brush_fit ’

in_file =[’DA34424a .dat ’]

units=[’A’] # Angstrom units

fit_mode =0 # using FOM1

fit_weight =[1]

method = ’mcmc ’ # Markov Chain Monte Carlo

# We create model list and first add the semi -

# infinite fronting and the thin water layer

model=[

# Re_sld Im_sld thk rough solv description

[ 4.32e-6, 0.0, 0, 5, 0.0, ’Quartz’],

[ -0.56e-6, 0.0, ’p3’, 3, 0.0, ’water’]

]

#Brush layer solvent volume fraction expression

#(n -1.5) x slice thickness gives the midpoint

# of each slice. The first slice in layer 2

# since the water layer is in position 1.

expr =’1-p0+(p0/(p1**p2))*((p1 /10) *(n -1.5))**p2’

# we add 10 slices for the brush layer with

# thickness brush_length /10 and roughness

# brush_length /20 to smooth the profile

for i in range(10) :

model.append ([ 1.41e-6, 0.0, ’p1 /10’, ’p1 /20’, expr , ’layer’])

# Finally we add the semi -infinite backing (toluene )

model.append ([5.86e-6, 0.0, 0, 0, 1.0, ’d-toluene ’])

system =[ model] # add single model in system list

patches =[1.0] # that completely covers the surface

global_param = [

# param min max description type =’uniform ’

# param mean sd description type =’normal ’

[’p0’, 0.02, 0.20, ’phi0 ’,’uniform ’],

[’p1’, 100, 700, ’brush_length ’,’uniform ’],

[’p2’, 1, 4, ’exponent ’,’uniform ’],

[’p3’, 5, 2, ’water thickness ’,’normal’],

]

multi_param = [] # no multi -parameters

constraints = [] # no constraints

resolution =[0.06] # dQ/Q=6%
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background = [[0.0 ,0.0 , ’uniform ’]] #background corrected data

scale = [[1.0 ,1.0 , ’uniform ’]] #data correctly scaled

res = ref.fit(project , in_file , units , fit_mode ,

fit_weight ,method ,resolution ,patches , system ,

global_param ,multi_param , constraints ,

background ,scale ,experror =True , plot =True ,fast =True )

Listing 3: Python code for NR data refinement from a PS brush at the quartz/d-
toluene interface.

Fitted NR data and sld/solvent volume fraction profiles for a PS brush at the
quartz/d-toluene interface.

The data refinement gives a water-layer thickness 3.9 ± 0.1 Å, φ(0) = 0.10 ± 0.01,

L = 480 ± 2.7 Å and n = 1.85 ± 0.05. Using MCMC sampling (or Bootstrap) except

for parameter uncertainty estimation, together with the fitted curves and sld/solvent

profiles we also plot the corresponding 1σ confidence intervals (fig. 3). Additionally

we obtain a corner plot of the free parameters that is informative about covariances
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or multi-modalities. In the present case (fig. 4) the slight stretch in the 2-D projec-

tions of the posterior probability distribution of parameter pairs suggests a moderate

covariance between parameters.

Corner plot of the free parameters during the PS brush NR data refinement.The
panels on the diagonal show the 1-D histogram for each model parameter obtained
by marginalising over the other parameters, with a blue line to indicate the mean
value. The off-diagonal panels show 2-D projections of the posterior probability

distributions for each pair of parameters.
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3.4. Refinement of lipid bilayer in three solvent contrasts

A type of NR data refinement that is encountered quite frequently concerns the

concurrent fit of reflectivity curves from solvent-contrast-variation series, a method

that permits an overall reduction of modelling ambiguity (Fragneto et al., 1995; Braun

et al., 2017; Wacklin, 2010). Supported phospholipid membranes at the solid/liquid

interface represent an archetypical system that can be studied in this way, where

the same structural model is used for fitting multiple curves where only the solvent

contrast is varied. Here let us consider a three contrast data set (D2O, Si matched

water and H2O) of a DMPC supported bilayer at the Si / water interface acquired on

the Platypus neutron reflectometer (ANSTO) (James et al., 2006) and distributed as

an example with the package refnx (Nelson & Prescott, 2019).

We model the interface using a six-layer model as SiO2 / thin water layer / inner

lipid heads / inner lipid tails / outer lipid tails / outer lipid heads, where solvent may

partially penetrate in each lipid layer. Given that the surface area per molecule (Apm)

is the same for both lipid leaflets the sld (not accounting for water penetration) and

solvent volume fraction φsolv of each of the four lipid layers is given by:

sldi =
bi

Apmti
(10)

φsolvi = 1−
Vi

Apmti
(11)

where t is the layer thickness, and b and V are the corresponding scattering length

and molecular volume respectively.

In Supporting Information (SI5) we present the commented code listing containing

the lipid-bilayer model based on equations 10, 11, where we additionally apply a set

of constraints so that the solvent volume fraction stays always larger than zero during

parameter refinement. This is accomplished by populating the constraint list with

expressions of the type 1 − Vi/(Apmti) > 0. A special mention needs to be made on
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how the solvent sld is handled for each input curve. We define a multi-parameter of

the form shown in listing 4, where three min/max bound pairs, one for each contrast

are inserted. The use of the multi-parameter in expressions is the same as for global

parameters, with the only difference being that the bounds are specific for each input

curve. Here we have chosen to use different min/max bounds values for all three

contrasts, thus leaving the solvent sld as a free parameter, accounting for an imperfect

solvent exchange during the measurement procedure.

multi_param = [

# param min max min max ... description type

[’m0’, 6.15e-6, 6.40e-6, 1.80e-6, 2.30e-6,

-0.56e-6, 0.0e-6, ’solvent_sld ’,’uniform ’]

]

Listing 4: Python code for defining multi-parameter list used in three-contrast NR
phospholipid bilayer refinement.

The bilayer parameters (area per lipid, inner head thickness, outer head thickness,

tail thickness, roughness) together with thin water layer thickness, solvent sld, back-

ground and scale of each curve, add up in total to 16 free parameters. The data fit

(fig. 5) results in parameter values well within expectations from previous literature.

The corner plot of free parameters (supporting information SI5) reveals a relative

strong correlation between tail thickness and area per lipid, as also found in (Nelson

& Prescott, 2019)
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Co-refined NR data and sld/solvent volume fraction profiles for a supported DMPC
bilayer at the Si/water interface. Reflectivity curves are systematically shifted in the

vertical axis for reasons of clarity. black, blue and green points correspond to
D2O,SMW and H2O solvent contrasts.

In supporting information (SI6) we include an even more characteristic example

of contrast manipulation in NR, based on measurements acquired by Hollinshead et

al. (Hollinshead et al., 2009) and thoroughly reanalysed in (McCluskey et al., 2019)

and (McCluskey et al., 2020), where for a DSPC lipid monolayer at the air / water

interface, the contrasts of both the water and lipids are varied systematically. We

co-refine seven different curves with a single structural model, highlighting the use of

multi-parameters.
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3.5. Polarised-neutron reflectivity refinement

Multi-parameters in anaklasis find also a very convenient use in the case of another

major application of NR i.e. the study of magnetic thin films by non-spin-flip polarised

NR (PNR) (Majkrzak et al., 2006). For saturated magnetic thin films, the system is

birefringent because the sld depends on the neutron polarisation with respect to the

magnetisation. So in co-refinement of PNR data, a multi-parameter can be defined

for setting the magnetic sld contribution depending on beam polarisation. One such

refinement of PNR (0.5 Tesla applied magnetic field) from a Fe-Ni alloy/ Au layer

at the Si/D2O interface acquired on the MARIA reflectometer (MLZ) (Mattauch

et al., 2018) is shown in fig. 6.
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Co-refined PNR data for a Fe-NI (≈ 400 Å) / Au (≈ 100 Å) film pair at the Si/water
interface. The Python code for the fit of the data can be found in supporting

information (SI7).Reflectivity curves are systematically shifted in the vertical axis
for reasons of clarity.

One may even combine in such a co-refinement both PNR and XRR data of the

same sample as described in an additional example is supporting information (SI8).

4. Discussion

The initial motivation for developing anaklasis came from the observation that a

usual bottleneck in the analysis of reflectivity results by users of neutron and x-ray

facilities is related to the relative difficulty in implementing custom interfacial models

in existing reflectivity software. When the system under study is simple and may be

approximated by a succession of a few uniform layers, the use of GUI based programs
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provides a convenient way for fitting experimental results. However when an interfacial

model that is based on intuition or previous knowledge about the system needs to

incorporate analytical expressions and constraints between model parameters, GUI

programs tend to be restrictive. Despite that there exist powerful reflectivity analysis

packages (Nelson & Prescott, 2019; Kienzle et al., 2011) where complicated models

can be defined by writing package-specific code, we argue that anaklasis provides

an alternative and more direct way for elaborate model definition, since functional

dependences and inequality constraints between model parameters can be expressed

in near natural mathematical language.

The adopted scheme of entering values or expressions to a Python list requires min-

imal coding literacy and produces very compact representation of reflectivity data

analysis. In principle someone reading a script, could figure out most details of cal-

culations or refinements given the information of how global and multi-parameters

work in anaklasis. On the other hand the use of SymPy expressions describing layer

parameters and constraints, together with basic Python list manipulation, permits

the definition of a very broad range of interfacial models as evidenced by the given

examples. Here we have to note that the only general use case that is not currently

covered by anaklasis concerns spin-flip polarised reflectivity, and interested users are

encouraged to use packages (like GenX (Björck & Andersson, 2007)) that explicitly

treat such systems.

Experimental data input is flexible in terms of reflectivity data coming from dif-

ferent types of instruments (neutron or x-ray reflectometers, reporting or not exper-

imental error and resolution). Option to weight the contribution of different curves

in co-refinements or to use different figures of merit is offered as a way to remedy

any detected bias towards high or low Q in the resulting fits. After model building

and reaching an acceptable fit of the experimental data with the differential evolution
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minimiser, the user is provided with the option to proceed to a MCMC sampling or

bootstrap analysis, obtaining a concrete idea of parameter uncertainty and possible

covariance. Program output in the form of log files, contains layer by layer detailed

information, while graphical output as seen in previous sections, summarises the result-

ing sld profiles and the overall agreement between the model’s theoretical reflectivity

and the experimental data. All functions return results in the form of multi-key dictio-

naries, so that scripts for batch calculations or result post-processing can be written.

Furthermore, anaklasis can be incorporated in Jupyter notebooks, aiding the produc-

tion of elegant reports.

Future addition of features to the package will not break compatibility of already

written scripts. For example addition of a new type of bootstrap analysis based on the

assumption of Poissonian statistics for δR(Q) will be added as an additional keyword

option for the argument method, thus not affecting past-developed refinement scripts.

Envisioned capabilities for calculating reflectivity curves from molecular dynamics

trajectories (Koutsioubas, 2016) will come in the form of new sub-modules. Addition-

ally for the sake of reproducibility, a test script is provided for the core reflectivity

calculations of the package so that all future versions may be tested before release.

While the incorporation of symbolic expressions in the interfacial system definition

provides a more direct and natural framework for users, it also comes with relative

performance penalties that accumulate as the number of defined layers and com-

plexity of mathematical expressions increase. Despite that in the current version of

anaklasis reflectivity calculations are not vectorised as in other packages (Nelson &

Prescott, 2019; Kienzle et al., 2011), the use of Fortran 90 extensions for the core

reflectivity calculations and the fact that Differential Evolution and MCMC use all

the available cpu cores (on posix -compliant system, Linux/macOS ) provides adequate

speed of calculations during data refinements. Indicatively, the refinement of three
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solvent contrast lipid bilayer data presented above, together with the the MCMC

sampling for the estimation of parameter uncertainty takes less than 12 minutes on a

4-core(8-thread) modern mobile CPU running Linux. On the same machine, the pre-

sented full refinement of polymer brush data takes about 2 minutes, while bootstrap

analysis close to 60 minutes.

Installation of the program requires the NumPy package (Harris et al., 2020) and

also the presence of a Fortran compiler like gfortran. Since installation of a Fortran

compiler on Windows might pose difficulties, a package with pre-compiled extensions

is also provided for Windows 10. All other required packages are handled automatically

by the installation script. Program output includes a list of all packages used during

calculations, together with their versions. anaklasis is released under the GPL v3

license and all other dependencies are released under open-source licences. The source

code, documentation and example library 13 of the project are held in Github 14

and users are encouraged to contribute interfacial models and refinement scripts that

can be integrated in the examples library. Finally an option to run anaklasis Jupyter

notebooks in the cloud through the Binder project is offered, thus allowing users to

perform analysis of reflectivity data using a web-browser and without installing the

software locally.

5. Conclusions

anaklasis is a new open-source tool for the analysis of XRR and NR data with a sim-

ple and compact interfacial model-definition method, providing advanced features for

data refinement, including MCMC and bootstrap analysis. Its smooth learning curve

may both accelerate treatment of data and aid in the reportability and reusability of

published reflectivity results.

13examples are provided both in the form of scripts and annotated Jupyter notebooks
14https://github.com/alexandros-koutsioumpas/anaklasis
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Synopsis

A new software package (anaklasis) for model-based analysis of specular neutron and x-ray
reflectivity is introduced. Key features include a user-friendly compact interfacial model defi-
nition scheme and a complete set for methods for co-refining data and estimating parameter
uncertainty.
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