001     903322
005     20240712113048.0
024 7 _ |a 10.1002/ange.202106018
|2 doi
024 7 _ |a 0044-8249
|2 ISSN
024 7 _ |a 0170-9046
|2 ISSN
024 7 _ |a 0932-2132
|2 ISSN
024 7 _ |a 0932-2140
|2 ISSN
024 7 _ |a 0932-2159
|2 ISSN
024 7 _ |a 1521-3757
|2 ISSN
024 7 _ |a 2128/29388
|2 Handle
037 _ _ |a FZJ-2021-05016
082 _ _ |a 660
100 1 _ |a Dewald, Georg F.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Influence of Iron Sulfide Nanoparticle Sizes in Solid‐State Batteries**
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638963007_20054
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Given the inherent performance limitations of intercalationbasedlithium-ion batteries, solid-state conversion batteries arepromising systems for future energy storage. A high specific capacityand natural abundancy make iron disulfide (FeS2) a promisingcathode active material. In this work, FeS2 nanoparticles wereprepared solvothermally. By adjusting the synthesis conditions,samples with average particle diameters between 10 nm and 35 nmwere synthesized. The electrochemical performance was evaluated insolid-state cells with a Li-argyrodite solid electrolyte. While thereduction of FeS2 was found to be irreversible in the initial discharge,a stable cycling of the reduced species was observed subsequently.A positive effect of smaller particle dimensions on FeS2 utilization wasidentified, which can be attributed to a higher interfacial contact areaand shortened diffusion pathways inside the FeS2 particles. Theseresults highlight the general importance of morphological design toexploit the promising theoretical capacity of conversion electrodes insolid-state batteries.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a LISZUBA - Lithium-Schwefel-Feststoffbatterien als Zukunftsbatterie (03XP0115B)
|0 G:(BMBF)03XP0115B
|c 03XP0115B
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Liaqat, Zainab
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lange, Martin Alexander
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tremel, Wolfgang
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Zeier, Wolfgang
|0 P:(DE-Juel1)184735
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/ange.202106018
|g Vol. 133, no. 33, p. 18096 - 18100
|0 PERI:(DE-600)1479266-7
|n 33
|p 18096 - 18100
|t Angewandte Chemie
|v 133
|y 2021
|x 0044-8249
856 4 _ |u https://juser.fz-juelich.de/record/903322/files/ange.202106018.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903322
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)184735
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-29
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-29
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-29
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-29
|w ger
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21