000903349 001__ 903349
000903349 005__ 20220103172040.0
000903349 0247_ $$2doi$$a10.1103/PhysRevLett.127.087602
000903349 0247_ $$2ISSN$$a0031-9007
000903349 0247_ $$2ISSN$$a1079-7114
000903349 0247_ $$2ISSN$$a1092-0145
000903349 0247_ $$2Handle$$a2128/29401
000903349 0247_ $$2altmetric$$aaltmetric:112136979
000903349 0247_ $$2pmid$$a34477424
000903349 0247_ $$2WOS$$aWOS:000686914800016
000903349 037__ $$aFZJ-2021-05040
000903349 082__ $$a530
000903349 1001_ $$0P:(DE-Juel1)130926$$aRushchanskii, Konstantin$$b0$$eCorresponding author$$ufzj
000903349 245__ $$aOrdering of Oxygen Vacancies and Related Ferroelectric Properties in HfO 2 − δ
000903349 260__ $$aCollege Park, Md.$$bAPS$$c2021
000903349 3367_ $$2DRIVER$$aarticle
000903349 3367_ $$2DataCite$$aOutput Types/Journal article
000903349 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638975037_27262
000903349 3367_ $$2BibTeX$$aARTICLE
000903349 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903349 3367_ $$00$$2EndNote$$aJournal Article
000903349 520__ $$aUsing density functional theory combined with an evolutionary algorithm, we investigate ferroelectricity in substoichiometric HfO2−δ with fixed composition δ=0.25. We find that oxygen vacancies tend to cluster in the form of two-dimensional extended defects, revealing several patterns of local relative arrangements within an energy range of 100 meV per Hf atom. Two lowest-energy patterns result in polar monoclinic structures with different transformation properties. The lowest one elastically transforms to the ferroelectric orthorhombic structure via a shear deformation, overcoming an energy barrier, which is more than twice lower than in the stoichiometric hafnia. The second-lowest structure transforms at smaller volumes to a nonpolar tetragonal one. We discuss the experimentally observed wake-up effect, fatigue, and imprint in HfO2-based ferroelectrics in terms of different local ordering of oxygen-vacancy extended defects, which favor specific crystallographic phases.
000903349 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000903349 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903349 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b1
000903349 7001_ $$0P:(DE-Juel1)130799$$aLežaić, Marjana$$b2
000903349 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.127.087602$$gVol. 127, no. 8, p. 087602$$n8$$p087602$$tPhysical review letters$$v127$$x0031-9007$$y2021
000903349 8564_ $$uhttps://juser.fz-juelich.de/record/903349/files/PhysRevLett.127.087602.pdf$$yOpenAccess
000903349 909CO $$ooai:juser.fz-juelich.de:903349$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903349 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130926$$aForschungszentrum Jülich$$b0$$kFZJ
000903349 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b1$$kFZJ
000903349 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130799$$aForschungszentrum Jülich$$b2$$kFZJ
000903349 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000903349 9141_ $$y2021
000903349 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000903349 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000903349 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-02
000903349 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000903349 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000903349 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000903349 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000903349 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000903349 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000903349 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903349 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-02-02
000903349 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2019$$d2021-02-02
000903349 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000903349 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2019$$d2021-02-02
000903349 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000903349 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000903349 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000903349 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000903349 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000903349 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000903349 980__ $$ajournal
000903349 980__ $$aVDB
000903349 980__ $$aUNRESTRICTED
000903349 980__ $$aI:(DE-Juel1)IAS-1-20090406
000903349 980__ $$aI:(DE-Juel1)PGI-1-20110106
000903349 980__ $$aI:(DE-82)080009_20140620
000903349 980__ $$aI:(DE-82)080012_20140620
000903349 9801_ $$aFullTexts