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ABSTRACT 
Open science initiatives are creating opportunities to increase research coordination and impact in 

nonhuman primate (NHP) imaging. The PRIMatE Data and Resource Exchange community recently 

developed a collaboration-based strategic plan to advance NHP imaging as an integrative approach for 

multiscale neuroscience. 

 

BACKGROUND 
Nonhuman primate (NHP) neuroimaging can address critical barriers in characterizing brain 

organization, function, development, and variability (Milham et al., 2018a; PRIMatE Data Exchange 

(PRIME-DE) Global Collaboration Workshop and Consortium, 

2020). Interfacing with complementary approaches, it can (1) contribute to an integrative, multiscale 

understanding of neural circuitry and mechanisms underlying behavior, cognition, and mental health; 

(2) bridge gaps between ‘‘ground truths’’ (e.g., neuronal tract tracing and neural recordings) and MRI-

based estimates of structural and functional connectivity; and (3) benchmark circuit-level perturbation 

techniques that provide causal insights and bases for novel neurotherapeutics (Klink et al., 2021). 

When combined with neuroimaging of other species, NHP imaging can improve our understanding of 

brain evolution and translate neuroscientific advances between rodents and humans. 

Recognizing the value of data sharing and open science practices in human neuroimaging (Milham et 

al., 2018b), recent efforts now extend to NHP imaging. The PRIMatE Data (Milham et al., 2018a) and 

Resource (Milham et al., 2018a; Messinger et al., 2021) Exchanges (PRIME-DREs), along with the 

accompanying biannual Global Collaboration Workshops (GCWs), were launched to accelerate 

progress in NHP neuroimaging and promote a culture of collaboration. The inaugural GCW brought 

together global investigators to assess needs (Milham et al., 2018a; PRIMatE Data Exchange (PRIME-

DE) Global Collaboration Workshop and Consortium, 2020; Messinger et al., 2021) on topics including 

data collection protocols; animal welfare and ethics; intellectual property; data standards, quality 

assessment, and analytic pipelines; and paradigm design. It also seeded collaborations focused on 

common challenges and solutions to key technological, procedural, and analytic issues (NeuroImage 

special issue). 

We report on a strategic plan of broad neuroscientific relevance formulated by the PRIME-DRE 

community during the second GCW (April 2021), attended virtually by 200+ investigators. It includes 

both short-term and long-term missions, organized around three strategic objectives and several cross-

cutting priorities (Figure 1). 
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PRIME-DRE STRATEGIC PLAN 
 Vision: obtain an evolutionarily informed, multimodal, multiscale understanding of the primate 

brain to guide next-generation scientific advances and therapeutics. 

 Mission: accelerate translation between NHP and human neuroscience by transforming NHP 

neuroimaging into a more collaborative and reproducible field. This involves widespread sharing 

of (1) data linked to digital, multimodal, three-dimensional (3D) atlases for the broader range of 

NHP species; (2) methods and tools for mapping among species, including humans; and (3) 

visualization and analysis tools that can facilitate comparison between rodent, NHP, and human 

data. 

 

Strategic objective #1: Improving NHP neuroimaging data quality, consistency, and 

interpretability Relevance 
NHP neuroimaging has achieved many methodological advances, but these sometimes propagate 

slowly. Greater awareness and openness of methods and tools will accelerate propagation. This can 

be achieved through robust benchmarking, establishing best practices, advancing user-friendly tools, 

and generating training materials and opportunities. 

Program of work 
1. Improve data quality and consistency. Challenges in standardizing NHP scanning include differences 

in hardware, brain sizes, and physiological state. MRIs are acquired on both human 3T and preclinical 

(>3T) (Autio et al., 2021) scanners depending on availability and species size. Scanning NHPs requires 

custom hardware (e.g., special RF coils, species-specific head holders), particularly when combined 

with electrophysiological, pharmacological, and neurovascular manipulations. Anesthesia and awake 

scanning protocols would benefit from sharing experiences and benchmarking to establish evidence-

based best practices. The same applies to signal-enhancing contrast agents, which require species- and 

agent-specific procedures, dosing, and scanning parameters. 

Efforts to harmonize human data collection across sites, hardware, and scanning protocols will also 

benefit NHP imaging (Autio et al., 2021). NHP neuroimaging would benefit from broader adoption of 

slice-accelerated imaging (for higher-resolution fMRI and diffusion MRI [dMRI]) and high-resolution 

structural MRI (T1w, T2w) to align multimodal data (e.g., electrophysiological recordings, tracer 

injections, neurovascular, and activity perturbations) to state-of-the-art brain atlases. Rather than a 

‘‘one-size-fits-all’’ approach, the community can collaboratively develop evidence-based standards for 

data collection and reporting (including animal preparation) (Autio et al., 2021; Basso et al., 2021; 

Messinger et al., 2021). Benchmarking acquisition protocols and procedures will help account for site-

based inter-animal and cross-species variation, accelerating standardization. Evaluation of data 

reproducibility and bias across protocols should be improved by optimizing anesthesia or behavioral 

training regimes and by using RF coils with more homogeneous coverage and high signal/noise (Autio 

et al., 2021). 

2. Improve and benchmark preprocessing pipelines. Preprocessing methods in human MRI have 

dramatically improved to (1) enhance signals; (2) reduce noise, artifacts, bias, and distortions; (3) 

improve alignment across modalities and subjects; and (4) augment the fidelity of data representations 

and metadata relative to brain geometry. Increasingly, toolmakers are developing end-to-end pipelines 

for preprocessing (Messinger et al., 2021) (e.g., HCP toolboxes, among others). 

However, species-specific pipelines require customization rather than ‘‘off-the-shelf’’ application of 

pipelines originally optimized for human data. Various solutions have been developed for 

preprocessing steps (Messinger et al., 2021) (e.g., brain extraction, co-registration), although often in 



isolation and with insufficient benchmarking. Minimum standards for NHP preprocessing pipelines are 

progressing, including surface segmentation, subcortical extraction, and analytics (Milham et al., 

2018a; Autio et al., 2021). Further, benchmarking of existing preprocessing step(s) can minimize 

duplicated effort and increase reproducibility. Standardized ‘‘benchmarking datasets’’ should be 

identified for straightforward comparison across analytical methods. Pipelines that work across species 

(e.g., by swapping brain templates [Messinger et al., 2021] and size parameters) will enable fair 

comparisons using similar preprocessing workflows. 

3. Improve NHP multimodal templates and atlases. Brain templates are ‘‘average’’ or representative 

brains that provide a common spatial framework for combining individual subject data. They can be 

expressed in 3D stereotaxic coordinates, cortical surface-based coordinates, and hybrids—

‘‘grayordinates’’ (Autio et al., 2021; Hayashi et al., 2021). Brain atlases are often linked to a particular 

spatial reference frame and provide maps of neuroanatomical subdivisions, serving to link NHP 

neuroimaging with other modalities. Currently, atlases differ by parcellation, nomenclature, 

coordinates, and representation of individual variability (Messinger et al., 2021). Recent progress in 

marmoset neuroinformatics has achieved a common parcellation scheme (Messinger et al., 2021; 

Majka et al., 2021), which will benefit from further validation and extension to other species. 

Our goals include (1) advancing robust parcellations that take into account different sources of 

variation (e.g., inter-individual, methodological); (2) developing multimodal parcellations based on 

neuroimaging, as well as histology, and establishing robust evaluation methods and criteria; (3) 

improving individual alignment to atlas(es) by developing transformations between different atlases, 

coordinates, methods, developmental stages, and species (RheMAP; https://prime-re.github. 

io/templates_and_atlases/rhemap.html); and (4) creating probabilistic, multimodal ‘‘supra-atlases’’ 

by integrating information across atlases and parcellations, leading to neuroanatomically registered 

knowledge libraries for interpreting data and generating novel hypotheses. 

4. Optimize ex vivo imaging and registration methods. Ex vivo imaging includes postmortem MRI or 

optical tomography scans and histological microscopy. Accurate co-registration of ex vivo MRI and 

histology with in vivo MRI is needed to link macroscale and microscale features (e.g., cytoarchitecture, 

gene/receptor expression, tracing) and to compensate for deformations occurring during brain 

removal and fixation. A systematic examination of brain deformation across large, globally shared 

samples could help refine ex to in vivo registration algorithms, decrease manual effort, and help align 

histological section stacks to native and template MRI (Hayashi et al., 2021; Majka et al., 2021). 

5. Establish metadata standards. Effective communication of sample composition (e.g., demographics, 

behavior, genetics, histology, rearing history), data acquisition (e.g., imaging acquisition 

parameters/protocols), and organization procedures are critical to data sharing, transparency, and 

reproducibility. A blueprint for adoption of the BIDS (Brain Imaging Data Structure) metadata standard 

to NHP imaging was generated (Poirier et al., 2021). Refinement of this standard and generation of 

tools to support its use and validation will facilitate broad adoption, especially if guided by the FAIR 

principles for data management (https://www.go-fair.org/fair-principles/). 

6. Benchmarking brain perturbation methods. A growing array of methods has emerged for system- 

and circuit-level brain perturbation, including activation or deactivation by transcranial (e.g., electrical, 

magnetic, focused ultrasound), invasive (e.g., deep brain microstimulation, near-infrared optical 

stimulation, chemical), physiological (e.g., hypercapnia, anesthesia), and/or genetic (e.g., 

chemogenetics, optogenetics) (Klink et al., 2021; Poirier et al., 2021) approaches. Collaborative 

benchmark studies will be crucial to rigorously compare methods, preferably in the same animals and 

across laboratories. Additionally, computational modeling can predict effects with untested 

parameters and guide refinement of perturbation techniques and parameters (Klink et al., 2021). 



Complementary methods should be used to evaluate and benchmark perturbation effects (e.g., fMRI, 

laminar and ultrahigh-density neurophysiological recordings). 

  

Strategic objective #2: Build community infrastructures and collaboration models 

Relevance 
Widespread collaboration with increased transparency, greater efficiency, and reduced redundancy 

may dramatically accelerate delivery on the proposed scientific vision and mission. New collaborative 

models should be established, aided by a robust infrastructure for standardized data acquisition and 

analysis. 

Program of work 
1. Efficient collaboration models. The GCW community agreed to (1) promote the parallelization of 

resource-intensive experiments, which can accelerate progress by distributing time and expense of 

behavioral training and data collection across labs; (2) improve coordination and awareness of efforts 

across laboratories to reduce redundancy and harmonize data acquisition; (3) incentivize and credit 

researchers for collaborative data generation and analysis, currently underappreciated by promotion 

committees. Software- and informatics-based solutions that promote communication, collaboration, 

and recognition will be particularly important. 

2. Scalable and sustainable resources. PRIME-DE and PRIME-RE (Messinger et al., 2021) are grassroots 

initiatives that demonstrate the feasibility and value of community resources for sharing data (raw and 

processed), tools, and knowledge. However, they are not yet sustainable, scalable platforms. Future 

efforts will benefit from (1) adopting existing informatics infrastructure for data sharing, (2) generating 

best practices for sharing, (3) decentralizing and incentivizing data sharing, (4) obtaining funding 

agency support for global community infrastructures (including development, maintenance, and use), 

and (5) implementing ethical structures to guide institutional exchanges of animals (when appropriate) 

or tissue (e.g., for histology, slice physiology) and the reuse of data. 

3. Specialized data resources. Some types of data would be broadly useful but are most efficiently 

collected at a limited number of sites because of specialized equipment or skills (e.g., ultrahigh field 

magnets, cutting-edge brain perturbation techniques, multimodal/multiscale recording capabilities, 

histological/anatomical expertise), high-throughput data acquisition, rare species, or specific age 

ranges. Investment in community resource datasets and coordination of activities among sites with 

specialized resources will collectively increase data access and scientific yield. 

4. Open-source analytic and informatics software. The complexity of NHP imaging analysis necessitates 

investing in sharing of analytic tools to promote transparency, reproducibility, and scalability to avoid 

redundancy and entry barriers for new investigators (Messinger et al., 2021). To further break down 

research silos, the development of open-source end-to-end analysis software solutions that embody 

best practices (e.g., quality control steps) and necessitate standards (e.g., metadata) is essential. When 

possible, solutions developed in human and rodent imaging should be leveraged to avoid duplication 

and support cross-species linkage. Greater focus on software applications that facilitate integration 

and visualization of multimodal data is essential to achieve multiscale brain perspectives. 

5. Share existing datasets registered to a common atlas. Existing NHP datasets acquired over decades 

provide uniquely valuable resources. However, such data are typically available only in summary or 

descriptive form in individual reports (e.g., lesion, recording sites, histology, tracing); in some cases, 

raw data have been shared (e.g., histological collections or paper records). Preserving, curating, and 

sharing such data is needed, particularly immunostaining and tract tracing. Once aligned to modern 



atlases, these will be valuable comparative resources that advance the 3Rs (replacement, reduction, 

and refinement in animal experimentation). 

 

Strategic objective #3: Advance scientific lines of inquiry focused on achieving ground 

truths Relevance 
NHP research offers access to ground truths regarding brain structure and function using techniques 

unavailable in humans and/or for which rodents may be suboptimal evolutionary models. Such data 

are critical to inform multiscale, mechanistic, and/or biophysical models that can facilitate translation 

to future neurology and psychiatry applications. Central will be mechanistic lines of inquiry for key 

domains of brain function (e.g., sensation, perception, movement, cognition) that incorporate 

evolutionary change, development, aging, behavioral adaptability, and neural plasticity. Elucidation of 

robust multiscale models will require leveraging multimodal data and a growing array of tools for 

establishing and evaluating correlational and causal relationships.  

Program of work 
1. Primate connectome advances. Obtaining a multiscale perspective on the wiring diagram of the 

brain and its functional interactions remains a central goal in neuroscience. In humans, MRI-based 

estimates of structural connectivity (from dMRI) and functional connectivity (from fMRI) deviate 

markedly from ground truth anatomical connectivity, owing to their spatial resolution, artifacts, noise, 

and bias. A promising strategy here is to estimate connectivity from high-quality fMRI and dMRI data 

in NHPs and to relate these to anatomical connectivity derived from tract-tracing studies (Autio et al., 

2021; Majka et al., 2021), which provide gold-standard graded and directional connectivity data. 

Systematic retrograde tract-tracing efforts in macaques and marmosets are on course to map their 

mesoscale connectomes (Hayashi et al., 2021; Majka et al., 2021). While anatomical studies provide a 

type of ground truth, they do not portray the functional efficacy (weights), prominence of activation 

or the complexities in circuit activation, such as the push-pull of opposing circuits. In this regard, 

functional tract tracing at laminar resolution, such as fMRI connectomes based on focal stimulation, 

could provide a complementary view of circuit function dynamics (Klink et al., 2021). Importantly, 

elucidating the principles of allometric scaling of connectivity and parcellation will aid translation 

between NHPs and humans. 

2. Brain systems and circuits. There is tremendous scientific interest in modeling brain networks across 

cells, circuits, and systems. A coordinated effort around fundamental questions within systems 

neuroscience may provide answers at different scales and derive unprecedented insights on general 

principles. Examples include feedforward and feedback interactions, layer- and cell-specific 

approaches, and perturbation studies. Such principles have been described as connectivity motifs that 

reflect common modes of information distribution and integration. Identification of such motifs might 

lead to a systematic and mathematical construct for representing information in biology, a prospect 

that would impact the fields of artificial intelligence and neuromorphics. Cross-species data will shed 

light on whether such principles are evolutionarily conserved. Development and aging will crosscut 

evolutionary insights. 

3. Coordinated experiments bridging NHP, rodents, and humans. Integrating NHP data and analytics 

with rodent and human open data initiatives will allow us to break through currently untestable 

scientific questions and identify which aspects of the human brain can be best modeled in different 

species. Coordinating analysis and experimentation will lead to new hypotheses and scientific 

questions—particularly for efforts to understand how genetics and environmental factors influence 

brain mechanisms underlying complex behavior. For example, coordinated acquisition of multimodal 

longitudinal imaging data in rodents and NHPs, together with controlled behavioral, pharmacological, 



and genetic manipulations, would facilitate exploration of brain processes underlying healthy aging 

and resilience. 

4. Modeling the brain in health and disease. Computational modeling generates formal, falsifiable 

hypotheses. Connectome-based models can be integrated with neuroimaging and other metadata and 

causally tested with brain perturbation. It is critical to obtain increasingly detailed multimodal data in 

typical and perturbed conditions. One aspect of brain organization yet to be incorporated in 

neurological, neurosurgical, and psychiatric treatment is the underlying mesoscale specificity of brain 

circuits. The advent of multiscale mapping methods, combined with focal scale perturbation, may 

enable intervention in a highly precise and patient-specific manner (Klink et al., 2021). Such improved 

precision would substantially impact models of circuit perturbation. Additionally, biophysical modeling 

of neuroimaging data will improve and benefit from increased validation testing. The development of 

biophysically realistic models of cognitive functions parallels efforts to advance fMRI in NHPs 

performing cognitive tasks. Future efforts to uncover the distributed mechanisms underlying cognitive 

functions in vivo and in silico will benefit from cross-community interaction and collaboration. 

Cross-cutting priorities 
Several guiding principles emerged during formulation of this strategic plan, which should be 

maintained as priorities across all strategic objectives to ensure their success. They include: 

reproducibility, efficiency, open science, cross-species translation (toward both humans and rodents), 

interdisciplinary collaboration, expanded participation and diversity among investigators, and 

attention to the 3Rs. 

How will success be measured? 
Defining specific metrics of success is premature. However, we can identify changes that would signify 

major progress. For example, strategic objective #1 will provide a growing armamentarium of 

standardized, high-quality data and processing and analysis tools that are well characterized with 

respect to validity, reliability, utility, and accessibility and their relative positioning. Strategic objective 

#2 will yield a research culture that increasingly values collaboration and has the data, informatics, and 

analytic platforms required for its implementation, including tools for ensuring recognition of 

contributions. Strategic objective #3 will resolve key questions about the primate connectome, 

establish more powerful translational pipelines to rodents and humans, advance mechanistic system- 

and circuit-level information, and lay a foundation for future secondary data analysis and next-

generation innovations. Progress will be evaluated during (1) triannual PRIME-DRE video conference 

calls, each focused on a specific strategic objective and maintaining broader community input via 

surveys/discussion, and (2) biennial GCWs. PRIME-DRE will also establish a registry of projects relevant 

to each strategic objective and program of work, which theme leaders from the GCW will help 

maintain. There will be an emphasis on operationalizing concepts, such as benchmarking, and 

developing collaborative projects, work, and follow through. 

Funding strategies and models 
Achieving this plan will depend upon major investments by funding agencies and financial 

stakeholders. Traditional funding awards, focused on individual investigators or small collaborations, 

can support the various programs, although in a piecemeal fashion. Their efficiency and collective 

impact will depend on the mutual coordination of awards (e.g., planning of designs, standardized 

protocols) and commitments to rapidly and openly sharing the data and resources generated in 

standardized ways. The latter is crucial for minimizing redundancy and promoting transparency and 

reproducibility. While funding agencies can provide such coordination and impose sharing mandates, 

the human imaging community’s experiences emphasize the need for investigator buy-in. To this end, 

the growth and enthusiasm surrounding PRIME-DRE signals an increasing readiness of investigators to 



(1) work more collectively with existing data, methods, and analytical tools; (2) collect (meta)data and 

develop tools with a mindset toward sharing; (3) generate and adopt standards for future data 

collection; and (4) collaborate to increase the scope, speed, generalizability, and impact of research. 

A complementary model, exemplified in human neuroimaging, is that of large-scale resource-

generation projects (e.g., HCP, UK Biobank). These projects provided investigators with high-quality 

data and accelerated the maturation of research methods (e.g., data collection, quality control, image 

processing/analysis), infrastructure (e.g., informatics, tools), and paradigms (e.g., high- throughput 

data collection). Nearly every investigator in human imaging has benefited from these efforts 

regardless of whether they were directly involved. Creation of large-scale resource-generation projects 

in the NHP neuroimaging community would have similar effects if designed to leverage global 

collaboration. Mechanisms that bring together funding from multiple international agencies, inspired 

by the present strategic plan, will be particularly well suited for scaling and achieving the ambitions 

stated here. 
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FIGURE 
 

 

Figure 1. Strategic plan for nonhuman primate neuroimaging 

The PRIME-DRE community here stipulates its vision, mission, and three strategic objectives, along 

with the plan of work and cross-cutting priorities required to achieve the objectives. See the main text. 
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