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Abstract
Emotions are valenced mental responses and associated physiological reactions that occur spontaneously and automatically in 
response to internal or external stimuli, and can influence our behavior, and can themselves be modulated to a certain degree 
voluntarily or by external stimuli. They are subserved by large-scale integrated neuronal networks with epicenters in the 
amygdala and the hippocampus, and which overlap in the anterior cingulate cortex. Although emotion processing is accepted 
as being lateralized, the specific role of each hemisphere remains an issue of controversy, and two major hypotheses have been 
proposed. In the right-hemispheric dominance hypothesis, all emotions are thought to be processed in the right hemisphere, 
independent of their valence or of the emotional feeling being processed. In the valence lateralization hypothesis, the left is 
thought to be dominant for the processing of positively valenced stimuli, or of stimuli inducing approach behaviors, whereas 
negatively valenced stimuli, or stimuli inducing withdrawal behaviors, would be processed in the right hemisphere. More 
recent research points at the existence of multiple interrelated networks, each associated with the processing of a specific 
component of emotion generation, i.e., its generation, perception, and regulation. It has thus been proposed to move from 
hypotheses supporting an overall hemispheric specialization for emotion processing toward dynamic models incorporating 
multiple interrelated networks which do not necessarily share the same lateralization patterns.
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Introduction

The brain is characterized by a conspicuous structural asym-
metry which is accompanied by a functional lateralization, 
i.e., the hemispheres are differentially specialized for certain 
tasks, and to some extent can function independently of each 
other within the scope of these tasks. Although the focus of 
the present mini-review is on the human brain, it must be 
noted that lateralization of brain function in the emotional 
domain is not restricted to humans, but constitutes a wide-
spread phenomenon found throughout the animal kingdom 

(Güntürkün et  al. 2020; Rogers and Vallortigara 2015; 
Vallortigara and Rogers 2020). Chimpanzees and several 
species of Old World monkeys display a right hemisphere 
dominance for both the perception and expression of emo-
tions (Lindell 2013; Zhao et al. 2020). Giant pandas exhibit 
a leftwards lateralization in the processing of positive but 
not of negative stimuli (Liu et al. 2021). In dogs, positively 
and negatively valenced stimuli are associated with a higher 
amplitude of tail-wagging movements to the right and to 
the left side, respectively (Siniscalchi et al. 2013). Emo-
tional reactions of bottlenose dolphins are stronger when 
negative stimuli are presented on their right than on their 
left side (Charles et al. 2021), and cuttlefish have a right 
eye preference for brightness matching associated with their 
camouflage abilities (Schnell et al. 2018). Finally, whereas 
honeybees show a bias to turn toward the scent of isoamyl 
acetate, an alarm pheromone, when it is presented on the 
right, and turn away from the source of this scent when pre-
sented on the left, they did not display an asymmetry in 
turning response to the odor of flowers on which they had 
been feeding prior to testing (Rogers and Vallortigara 2019).
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The most obvious structural lateralization in the human 
brain, the protrusions of the left occipital and the right fron-
tal pole beyond their contralateral counterparts, is so promi-
nent, that it is associated with so-called petalia-impressions 
on the inner surface of the skull (Hadziselimovic and Cus 
1966a; Hadziselimovic and Ruzdic 1966b). Reports on 
functional lateralization date back as early as 1861, when 
Broca associated a lesion in the third convolution of the 
left frontal lobe with the patient’s sudden loss of the ability 
to speak (Broca 1861a; b). Besides the richly documented 
asymmetry associated with speech production and language 
comprehension (Friederici and Gierhan 2013), lateralization 
has also been described for functions as varied motor con-
trol (Amunts et al. 1997; Sainburg et al. 2016; Sokolowska, 
2021), visuospatial skills (Ciricugno et al. 2021; Vogel et al. 
2003), and emotion processing (Demaree et al. 2005; Pack-
heiser et al. 2021), to name only a few of many studies.

Structural asymmetry has been found in several regions 
that are involved in emotion processing, including the cin-
gulate cortex, and related to behavior, psychopathology and 
illness, e.g., schizophrenia (Fujiwara et al. 2007). Another 
study suggested that differences in asymmetry of the anterior 
cingulate region may correspond with behavioral style, i.e., 
disposition to fear and anticipatory worry (Pujol et al. 2002), 
and lateralization has been discussed for emotion processing 
(Demaree et al. 2005).

Emotions are valenced mental responses to internal or 
external stimuli, which trigger visceromotor reflexes and 
modulate perception and cognition as well as physiological 
arousal, i.e., they induce feelings (Cabanac 2002; Ocklen-
burg and Güntürkün 2018). Thus, emotions enable adaptive 
behavior in response to specific events. Whereas Murphy 
and Zajonc (1993) postulated the existence of only two 
classes of emotion (i.e., positive and negative), Russell and 
Barrett (1999), Russell (2003), identified four “core affect” 
categories resulting from the blend of hedonic and arousal 
values (i.e., pleasure/good, displeasure/bad, activated/ener-
gized and sleepy/enervated), and Ekman (1992), Ekman 
et al. (1969) defined six discrete emotional states (i.e., basic 
emotions) based on the distinct facial expressions with 
which they are associated (i.e., anger, fear, sadness, enjoy-
ment (or happiness), disgust and surprise), and each one 
of these basic emotions is associated with a specific neural 
network (Fusar-Poli et al. 2009b).

Brain regions subserving emotion

Emotion processing involves the coordinated activation of 
multiple large-scale neuronal networks encompassing both 
cortical and subcortical brain regions to enable identifica-
tion of the emotional significance of stimuli as well as the 

induction and modulation of affective states and emotional 
behaviors.

Building on early models in which the limbic system 
was though to constitute the anatomic basis of emotions 
(MacLean 1970; Papez 1937; Yakovlev 1948, 1968), our 
understanding of the brain regions involved in the processing 
of this higher cognitive function has matured to the present 
concept of integrated pathways of distributed neural net-
works which are connected by the limbic system (Arciniegas 
2013; Catani et al. 2013; Lindquist et al. 2012; Mesulam 
2000; Pessoa 2018; Rolls 2015). Mesulam (2000) proposed 
that the amygdala and hippocampus are interconnected epi-
centers of two large-scale integrated pathways which are 
differentially involved in the various components of emotion 
and overlap in the anterior cingulate cortex.

The amygdala‑centered network

The amygdala-centered network constitutes the neurobio-
logical substrate for the integration of sensory input and 
emotional arousal to decode the significance of the stimulus 
for the organism, and includes the amygdala, areas of the 
olfactory, orbitofrontal, insular, anterior and midcingulate 
cortex as well as the ventral striatopallidum (Amaral et al. 
1992; Catani et al. 2013; Geschwind 1965; Mesulam 2000).

The role of the amygdala is to assess a sensory stimulus 
on the basis of its intrinsic hedonic properties and possible 
association with other previously acquired primary rein-
forcers, as well as based on the organism’s current motiva-
tional state to determine its valence and modulate its neural 
impact on the organism to induce an adequate emotional 
state (Mesulam 2000). Fear is probably the emotion cat-
egory most often associated with the amygdala, and was first 
described in the seminal work by LeDoux (1994). Although 
the amygdala appears to play a more extensive role in nega-
tively valenced emotions, it is also significantly involved in 
the processing of positively valenced stimuli (Cunningham 
and Kirkland 2014; Hamann et al. 2002; Wang et al. 2017), 
and depressed patients show higher amygdala responses to 
negative stimuli and lower amygdala responses to positive 
stimuli than do healthy controls (Groenewold et al. 2013). 
A meta-analytic functional connectivity-based parcellation 
of the amygdala revealed three clusters comparable in shape 
and relative position with the cytoarchitectonically identi-
fied laterobasal, centromedial, and superficial nuclei groups 
(Amunts et al. 2005; Bzdok et al. 2013). Functional profil-
ing of the three clusters showed the “laterobasal cluster” to 
be associated with coordinating high-level sensory input, 
the “centromedial cluster” to mediate attentional, vegeta-
tive, and motor responses, and the “superficial cluster” to 
be involved in the processing of olfactory stimuli (Bzdok 
et al. 2013).
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The amygdala is able to integrate and process multimodal 
information, a primordial requisite for the modulation of 
higher cognitive functions such as emotional behavior, and 
this integrative function is subserved by its connectivity 
with numerous cortical and subcortical structures belong-
ing to multiple functional systems. Furthermore, individual 
neurons in the amygdala not only respond to all types of 
unimodal sensory or viscerosensory stimuli, but also to mul-
timodal sensory stimuli, to reward or punishment-related 
reinforcers, and to stimuli with a cognitive significance 
(Yilmazer-Hanke 2012). The primate amygdala is connected 
with primary/higher order unimodal areas belonging to all 
sensory systems, with multimodal areas of the orbitofron-
tal, anterior cingulate, insular, and temporal cortex, includ-
ing the hippocampal complex (Aggleton et al. 1980, 2015; 
Aggleton and Saunders 2000; Amaral 1986; Amaral et al. 
1992; Carmichael and Price 1995; Freese and Amaral 2005; 
Price 2003; Young et al. 1994). It is also connected with 
numerous subcortical structures, including the basal fore-
brain, thalamus, hypothalamus, periaqueductal central gray, 
and the peripeduncular nucleus (Aggleton et al. 1980; Price 
2003). These connections are mostly reciprocal, and connec-
tivity between the amygdala and unimodal sensory regions is 
organized in such a way that efferents arise from the higher 
order sensory areas, whereas the amygdala targets the pri-
mary or secondary sensory areas (Amaral et al. 1992; Turner 
et al. 1980). Visual input arises specifically from areas of 
the ventral visual stream, and gustatory and somatosensory 
information reaches the amygdala through a relay in the 
insula (Aggleton 1993; Mesulam and Mufson 1985).

The orbitofrontal cortex is involved in the integration of 
value-related olfactory and gustatory information with vis-
cerosensory information (processed in the anterior insula), 
and in the transfer of this information to the pACC (Rolls 
2019). The lateral orbitofrontal cortex showed a stronger 
functional connectivity with the gyral components of pACC 
area p24 (i.e., areas p24a and p24b), whereas medial orbit-
ofrontal areas are more tightly associated with p24c (i.e., 
the sulcal component of area p24) and with p32 (Palomero-
Gallagher et al. 2019). The orbitofrontal cortex, together 
with subgenual cingulate area 25 (a key node of the cortical 
autonomic network; Gianaros et al. 2005; Kimmerly et al. 
2005; Wong et al. 2007), also modulates autonomic and 
visceral functions in response to the valence of the stimu-
lus, and does so via connections with the anterior insula, 
periaqueductal gray and hypothalamus (Critchley and Har-
rison 2013; Öngür and Price 2000; Palomero-Gallagher et al. 
2015; Rempel-Clower and Barbas 1998).

The insula plays a major role in functional integration, 
and is thought to constitute a correlate of consciousness 
(Craig 2009). It is a structurally and functionally segregated 
brain region involved in olfactory, gustatory, sensorimo-
tor and cognitive processes, including emotion processing 

(Kurth et al. 2010; Mesulam and Mufson 1985). Interest-
ingly, a meta-analysis of functional imaging studies revealed 
an overlap of activations related to the olfacto-gustatory, 
emotional and cognitive domains in the anterior-dorsal 
insula, which thus constitutes a key region in the human 
brain for the integration of olfaction, emotion and memory 
(Kurth et al. 2010). Furthermore, activation levels in the 
anterior insular cortex serve as correlates of the intensity 
of the experienced emotion, regardless of its valence (Zhu 
et al. 2019).

The amygdala targets the subgenual and pregenual parts 
of the anterior cingulate cortex (sACC and pACC, respec-
tively) via the uncinate fasciculus, and cingulate regions are 
interconnected via the cingulate bundle (Dejerine 1895). 
The two ACC regions and the anterior midcingulate cor-
tex (aMCC) monitor sensory stimuli, whereby ACC areas 
monitor emotional stimuli with respect to their pleasantness 
or unpleasantness (Oane et al. 2020; Palomero-Gallagher 
et al. 2015, 2019; Vogt and Miller 1983), and areas of the 
aMCC region play a crucial role in both the perception and 
anticipation of pain (Porro and Lui 2009; Vogt et al. 1996; 
Vogt and Sikes 2009b).

It is widely accepted that areas of the sACC subserve the 
processing of negatively valenced stimuli (Etkin et al. 2011; 
George et al. 1995; Karama et al. 2011; Liotti et al. 2000; 
Mechias et al. 2010; Smith et al. 2011). The processing of 
sadness and fear activates cytoarchitectonic areas s24 and 
s32, respectively (Palomero-Gallagher et al. 2015). Inter-
estingly, pACC area p32 is associated with the domains of 
anxiety and fear, though these activations were elicited by 
tasks requiring the induction of emotions and theory of mind 
processes, and not by the experience of the emotion itself 
(Palomero-Gallagher et al. 2015). This association of area 
p32 with the subject’s ability to experience empathy high-
lights the unique position of the cingulate cortex as a link 
between the emotional and memory domains, thus enabling 
cognitive influences on emotion (Palomero-Gallagher et al. 
2015; Stevens et al. 2011). Notably, although some studies 
studying the neural substrate for the subjective feeling of 
happiness reported activations within ACC (e.g., Habel et al. 
2005; Phillips et al. 1998), no meta-analytic approaches have 
been able to identify a significant association between the 
pACC (or any of its areas) and the processing of positively 
valenced emotions (Kirby and Robinson 2017; Palomero-
Gallagher et al. 2015; Phan et al. 2002; Torta and Cauda 
2011; Vytal and Hamann 2010).

pACC receives gustatory and viscerosensory input from 
the orbitofrontal cortex, and is able to integrate visceral 
sensations via its reciprocal connections with the insula 
(Qadir et al. 2018; Taylor et al. 2009), and a recent cyto-
architectonically informed meta-analysis found the gyral 
components of pACC area p24 to be significantly associated 
with the behavioral domains of gustation and interoception 
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(Palomero-Gallagher et al. 2019). These areas also co-acti-
vate with areas of the affective network (George et al. 1995; 
Lévesque et al. 2003), highlighting the importance of reward 
value in the generation of emotions (Glascher et al. 2012; 
Grabenhorst and Rolls 2011). Area p32 of pACC, and also 
area s24 of sACC, are involved in estimating the emotional 
valence of faces via visual input arising from areas of the 
ventral stream (Palomero-Gallagher et al. 2015, 2019). The 
pACC is also involved in conflict monitoring, and the sulcal 
component of area p24 is associated with action inhibition, 
and co-activates with components of the salience network 
(Palomero-Gallagher et al. 2019). Thus, the pACC integrates 
information from the dorsolateral prefrontal cortex concern-
ing the selection and maintenance of options to current or 
proposed behaviors to provide the motivation to carry out 
selected behavior (Holroyd and Yeung 2012). Furthermore, 
it was shown that face-evoked responses in the anterior 
insula and anterior cingulate cortex contain information 
which is shaped by social interaction, and it was hypoth-
esized that this provides a substrate of how social inclusion 
shapes future behavior and interaction, while the recognition 
of individual faces is supported by the visual cortex (Eger 
et al. 2013).

As part of both the amygdala- and the hippocampus-
centered network, the ACC region is also able, either via its 
direct reciprocal connections with the rostral hippocampus, 
or in a relay through the thalamus, to modulate the con-
solidation and retrieval of memory (Aggleton 2012; Nava-
wongse and Eichenbaum 2013; Xu and Sudhof 2013). Given 
that memories of emotionally valenced stimuli are easier to 
recollect than those of neutral ones, the ACC is thought to 
facilitate retrieval of related and competing memories by 
creating contextual representations of these experiences dur-
ing the consolidation phase (Bian et al. 2019).

The aMCC receives input from ACC regions and also 
via the medial pain system and is thus in an ideal posi-
tion to modulate avoidance behavior in response to noxius 
stimuli (Vogt 2005), whereby activations were found to be 
proportional to the degree of pain experienced (Derbyshire 
et al. 1998; Vogt et al. 1996). The aMCC is also activated 
during the processing of negatively valenced stimuli, and 
involved in the expression of fear responses (Pereira et al. 
2010; Vogt et al. 2003). The MCC region projects to the 
supplementary areas, and the sulcal component of aMCC 
also contains a cingulate motor area (Morecraft and Tanji 
2009; Vogt and Sikes 2009b), which projects directly to the 
facial motor nucleus and to portions of the spinal cord that 
control finger and hand movements. Thus, a brain network 
subserving emotion is able to directly generate and modulate 
facial, limb, or vocal reactions in response to a perceived 
stimulus. Furthermore, aMCC is thought to coordinate skel-
etomotor reflex responses in fear avoidance strategies (Vogt 
et al. 2003).

The ventral striatopallidum encompasses the ventral por-
tions of the caudate nucleus, putamen and globus pallidus, 
as well as the nucleus accumbens and the olfactory tubercle 
(Mesulam 2000). It receives direct input from the amygdala, 
but is also connected with the orbitofrontal cortex and the 
ACC, and is a central component of the reward circuit, and 
in the generation of emotional motor activity (Nieuwenhuys 
et al. 2008).

The hippocampus‑centered network

The hippocampus-centered network mediates the integra-
tion of information processed by multiple large-scale brain 
networks involved in the different memory types to incor-
porate cognition into emotion processing. It includes the 
hippocampal complex, entorhinal and retrosplenial cortex 
(RSC), areas of the anterior (discussed above) and posterior 
cingulate cortex, as well as the thalamus (Mesulam 2000).

The hippocampal formation is a key structure in the con-
solidation and retrieval of declarative, spatial and emotional 
memory (Bird and Burgess 2008; Fanselow and Dong 2010; 
Strange et al. 2014), and the entorhinal cortex represents 
the nodal point in neocortico-hippocampal circuits (Insausti 
and Amaral 2008). The hippocampal formation consists of 
the hippocampus proper, with the Cornu Ammonis regions 
CA1–CA4 and the fascia dentata, and the subicular com-
plex, with the prosubiculum, subiculum, presubiculum, and 
parasubiculum (Palomero-Gallagher et al. 2020). The hip-
pocampus is situated at the top of a highly complex intercon-
nected and hierarchically organized network participating in 
memory functions (for a comprehensive review see Aggleton 
2012), and its reciprocal connections with the amygdala are 
of particular importance for affective and social learning 
(Insausti and Amaral 2012; Yilmazer-Hanke 2012).

The dorso-ventral axis of the rodent hippocam-
pus, which is homolog to a posterior-to-anterior axis 
in primates, is structurally and functionally segregated 
(Fanselow and Dong 2010; Strange et al. 2014). The dor-
sal hippocampus is more densely connected with the RSC, 
mammillary bodies, and anterior thalamus, and is mainly 
involved in cognitive functions such as navigation and 
exploration (Fanselow and Dong 2010; Jones and Wit-
ter 2007; Moser et al. 1993; Risold and Swanson 1997; 
Strange et al. 2014; Witter 1993). The ventral hippocam-
pus is more strongly connected to the amygdala, nucleus 
accumbens and hypothalamus, and is involved in moti-
vated behavior and autonomic responses (Canteras and 
Swanson 1992; Fanselow and Dong 2010; Groenewegen 
et al. 1987; Henke 1990; Strange et al. 2014; van Groen 
and Wyss 1990). The primate hippocampus presents a 
comparable heterogeneity in structural connectivity, with 
a rostro-caudal decrease in connectivity with the amyg-
dala, nucleus accumbens and prefrontal cortex, and a 
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rostro-caudal increase in connectivity with the posterior 
cingulate cortex (PCC) and RSC (Aggleton 2012; Fried-
man et al. 2002; Fudge et al. 2012; Kobayashi and Amaral 
2003, 2007).

In humans, the posterior hippocampus is activated during 
declarative and spatial memory tasks (Greicius et al. 2003; 
Maguire et al. 1997). Resting state functional connectiv-
ity analyses found the posterior hippocampus to be more 
highly connected to the RSC and lateral parietal cortex, 
i.e., areas involved in visuospatial cognition, whereas the 
anterior hippocampus was more strongly connected to the 
temporal, orbitofrontal and anterior cingulate cortex, i.e., 
areas associated with motivational behavior (Adnan et al. 
2016; Vogel et al. 2020). There is also evidence of anatomi-
cal connectivity between the anterior hippocampus and 
the fusiform gyrus (Duvernoy 2005), a part of the visual 
system particularly involved in the identification of faces 
(Kanwisher and Yovel 2006), words (Cohen and Dehaene 
2004) and places (Epstein et al. 1999; Epstein 2008), and 
single neurons in the human hippocampus have not only 
been found to respond differentially to faces and objects, but 
also to respond preferentially to specific emotional expres-
sions (Fried et al. 1997). Interestingly, genes expressed in 
the posterior hippocampus correlate with cortical regions 
involved in memory processes, whereas gene expression in 
the anterior hippocampus correlates with regions involved 
in emotion (Vogel et al. 2020).

The hippocampal complex and entorhinal cortex are 
interconnected with the RSC and with PCC area 23, though 
connections are much denser with the former than with the 
latter region (Kobayashi and Amaral 2003). RSC is also 
densely interconnected with areas 24 and 23 of the ACC 
and PCC, respectively (Kobayashi and Amaral 2003, 2007). 
The RSC is reciprocally connected to dorsolateral prefrontal 
areas 9 and 46, and thus constitutes a link between the hip-
pocampus and brain regions involved in executive functions 
(Kobayashi and Amaral 2003, 2007). It receives early visual 
input from areas v2 and v4 of the ventral stream and is also 
interconnected with inferior parietal area 7a (Kobayashi and 
Amaral 2003, 2007), which mediates visuomotor coordina-
tion (Rozzi et al. 2008). Reciprocal connections between 
the anterior thalamic nucleus and both the hippocampus and 
RSC facilitate the integration of visual and body-based ori-
entation cues (Miller et al. 2014; Shine et al. 2016), the epi-
sodic retrieval of familiar places and objects (Sugiura et al. 
2005), and provide an anatomical substrate for fear condi-
tioning processes whereby the RSC is critically involved in 
tasks during which subjects must form appropriate associa-
tions among diverse cues and outcomes to perform optimally 
(Corcoran et al. 2016; Keene and Bucci 2008a, b). Thus, 
the RSC is in a position to modulate both the storage and 
retrieval of spatial and contextual information, in particular 
that related to fear.

The PCC is primarily involved in visuospatial, sensorimo-
tor and long-term memory functions, and in the framework 
of emotion processing, plays a role in the assessment of the 
self-relevance of emotional events and stimuli (Vogt and 
Laureys 2009a). The PCC has reciprocal connections with 
sACC (Vogt and Pandya 1987), and is also targeted by the 
hippocampal complex and the RSC (Kobayashi and Amaral 
2003, 2007). Furthermore, the PCC receives input from 
auditory association areas and has extensive connections 
with the inferior parietal cortex (Vogt and Pandya 1987) 
through which it receives input from areas belonging to the 
dorsal visual stream and involved in movement and spatial 
orientation (Kravitz et al. 2011; Ungerleider and Mishkin 
1982). The convergence of visual and auditory stimuli 
together with information coded for valence in ACC enable 
the self-referential processing of stimuli and experiences.

Lateralization of emotion processing

As with language functions, our first inkling of a possible 
lateralization in the processing of emotions came from clin-
ical observations of patients with left-brain lesions, since 
despite severe speech impairment, they retained traces of 
emotional language (Hughlings-Jackson 1878). Two main 
models of lateralization have been proposed, based on 
empirical support from studies in both patients and healthy 
subjects (Gainotti 2019a): the right-hemispheric dominance 
hypothesis and the valence lateralization hypothesis.

Right‑hemispheric dominance hypothesis

The right-hemispheric dominance hypothesis proposes that 
the right half of the brain is dominant for the processing of 
all emotions, independent of their valence or of the emo-
tional feeling being processed (Borod et al. 1998).

Patients with lesions in the right temporo-parietal region 
(i.e., Wernicke’s region for language comprehension; Wer-
nicke 1874) perform worse in tasks involving comprehen-
sion of the emotion expressed by affective speech than do 
patients with comparable left-hemispheric lesions (Heilman 
et al. 1975; Tucker et al. 1977). Right-hemispheric lesions 
affecting the fusiform face area (Kanwisher and Yovel 2006), 
impair the patient’s ability to recognize the nature of the 
emotion conveyed by images of emotional faces (Adolphs 
et al. 1996). More widespread lesions in the right ventrolat-
eral visual cortex also result in the inability to identify the 
valence or category of emotions depicted in in images of 
scenes (DeKosky et al. 1980). Unilateral focal excision of 
the right parieto-occipital cortex (Kolb and Taylor 1981), or 
electrical stimulation of right temporal visual-related cortex 
(Fried et al. 1982) also result in an impaired processing of 
facial expressions. Patients with right-hemispheric lesions 
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are also unable to identify the valence or category of emo-
tions depicted in in images of scenes (DeKosky et al. 1980). 
Interestingly, pictures of angry, happy or fearful faces, but 
not of neutral faces, elicited a right-lateralized activation of 
the amygdala when presented to a patient with bilateral dam-
age to the primary visual cortex (Pegna et al. 2005). A recent 
meta-analysis revealed a significant correlation between the 
degree of emotional impairment in patients suffering from 
frontotemporal lobar degeneration and the degree of atrophy 
or hypometabolism of frontotemporal structures in the right 
hemisphere (Gainotti 2019b). A right-hemispheric domi-
nance has been demonstrated for both the generation and 
the perception of emotional displays, since facial expressions 
on the left side of the face are more emotionally intense than 
those on the right side, and participants perceive emotional 
expressions to be more emotional when presented in the left 
than in the right visual field (Blom et al. 2020; Burt and 
Hausmann 2019; Lindell 2018; Prete et al. 2015; Sackeim 
and Gur 1978; Sackeim et al. 1978; Wyczesany et al. 2018).

Processing of emotion expression has also been found to 
be associated with lateralization of white matter pathways. 
The volumetric asymmetry of the uncinate fascicle, which 
connects components of the temporo-amygdala-orbitofrontal 
network and is larger in the right than in the left hemisphere, 
is positively correlated with lateralization of emotional 
expressivity of sad faces (Ioannucci et al. 2020). Further-
more, the rightward lateralization of the dorsal component 
of the superior longitudinal fascicle (i.e., SLF I) is negatively 
correlated with lateralization of emotional expressivity of 
happy faces (Ioannucci et al. 2020), and disruptions in the 
SLF are the most common white matter alteration in patients 
suffering from psychiatric emotional conditions (Jenkins 
et al. 2016).

Valence lateralization hypothesis

According to the valence lateralization hypothesis, both 
hemispheres are involved in the processing of emotion and 
emotional feelings, but in a manner dependent on the emo-
tional valence of the information being processed, with a 
preference of the left hemisphere for positively valenced 
emotions and of the right one for negatively valenced ones 
(Davidson 1983). In a variant of this hypothesis, laterali-
zation would be driven by motivational valence, with the 
left hemisphere being dominant for approach motivational 
tendencies and the right one for withdrawal ones (Demaree 
et al. 2005).

This hypothesis was formulated to explain the fact that 
pathological laughing conditions or indifference to one’s 
own illness were frequently associated with damage to 
the right hemisphere, whereas pathological crying or the 
onset of depressive symptoms occurred mostly in patients 
with lesions to the left hemisphere (Bear 1983; Sackeim 

et al. 1982). Further support is provided by the observation 
that speech with a positively valenced emotional content 
resulted in an activation of the left amygdala of a long-term 
unresponsive comatose patient (Eickhoff et al. 2008), and 
positive visual stimuli elicit a left amygdalar activation in 
healthy subjects (Canli et al. 1998; Hamann et al. 2002; 
Lee et al. 2004). Interestingly, this normal left-lateralized 
amygdalar activity is often disturbed in patients with men-
tal disorders (Allen et al. 2021; Baas et al. 2004). Divided 
visual field studies revealed that identification of positively 
valenced facial expressions or emotional words is faster and 
more accurate when these are presented in the right than in 
the left hemifield (i.e., when the stimulus is processed by 
the left vs. right hemisphere), and the opposite holds true for 
negatively valenced facial expressions or emotional words 
(Holtgraves and Felton 2011; Jonczyk 2015; Martin and 
Altarriba 2017; Reuter-Lorenz and Davidson 1981; Wycz-
esany et al. 2018). Analysis of alpha-band electroencepha-
lographic activity in the frontal lobe revealed that stimuli 
designed to induce happiness elicit a greater cortical activity 
the left hemisphere, whereas stimuli designed to evoke nega-
tive emotions resulted in a greater cortical activity in the 
right hemisphere (Jones and Fox 1992; Zhao et al. 2018). A 
recent study addressing the ecological validity of the valence 
lateralization hypothesis by means of a mobile EEG record-
ing system to monitor brain activity of romantic partners in 
their everyday environment also found emotional kisses to 
be associated with an increased asymmetry index in alpha-
band activity of the frontal lobe (Packheiser et al. 2021).

Toward a more differentiated picture

Lateralization associated with the processing of anger is 
best explained by the motivational variant of the valence 
hypothesis, since behaviourally this negatively valenced 
emotion is associated with the same kind of response as is 
happiness, i.e., with a drive toward the stimulus (Carver and 
Harmon-Jones 2009; Demaree et al. 2005). In line with the 
expected approach/withdrawal dominance, dichotic listen-
ing studies on the perception of sadness or anger through 
affective prosody revealed a greater involvement of the right 
hemisphere in the processing of sadness and of the left hemi-
sphere in that of anger (Gadea et al. 2011). Likewise, view-
ing of angry faces resulted in a higher left prefrontal activity 
than that when neutral faces were presented (Schutter and 
Harmon-Jones 2013), as did anger induced experimentally 
by manipulated insult (Harmon-Jones and Sigelman 2001).

Looking into the future: the need for hemispheric 
functional‑equivalence hypotheses

Function-location meta-analyses have been applied 
in an attempt to quantitatively integrate results from 
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multiple studies belonging to a specific cognitive or emo-
tional domain. E.g., in a meta-analysis of over 100 functional 
magnetic resonance imaging studies addressing the mecha-
nisms underlying processing of emotional faces (Fusar-Poli 
et al. 2009a, b), the authors first tested regional activation 
differences for an effect of laterality independently from the 
valence of stimulus, and found the components of the emo-
tion network to be bilaterally activated, thus providing no 
support for the right-hemispheric dominance hypothesis. 
The authors then searched for possible lateralization pat-
terns based on both the motivational and the drive variants 
of the valence lateralization hypothesis. When testing for 
the emotional valence of the stimulus, a laterality was only 
to be induced by the processing of faces expressing nega-
tive emotions. However, contrary to what is predicted by the 
model, the activation was localized in the left hemisphere. 
Finally, when grouping stimuli according to their corre-
sponding approach/withdrawal category, a left-lateralized 
activation was found in the inferior frontal gyrus during the 
processing of faces encoding approach emotions, and right-
lateralized activations occurred in the medial frontal and 
middle frontal gyri during the processing of faces encoding 
withdrawal emotions. A meta-analysis addressing the neu-
roanatomical structures underpinning emotional experiences 
demonstrated that the basic emotions happiness, sadness, 
fear, anger and disgust are associated with distinct regional 
brain activation patterns (Vytal and Hamann 2010). A lat-
eralization could only be associated with the processing of 
fear, since most prominent clusters are located in the right 
cerebellum and insula, as well as bilaterally in the amygdala. 
For each of the remaining basic emotions, largest activation 
clusters were found in both the left and right hemisphere 
(Vytal and Hamann 2010). Specifically, happiness is asso-
ciated with activations in the right superior temporal gyrus 
and the left anterior cingulate cortex, sadness with clusters 
in the left caudate nucleus and medial frontal gyrus, as well 
as in the right inferior frontal gyrus. Anger is associated 
with activations of the left inferior frontal gyrus and right 
parahippocampal gyrus, and disgust with bilateral insular 
activations (Vytal and Hamann 2010). Finally, results of 
a multi-center study evaluating functional connectivity in 
resting state functional magnetic resonance imaging scans 
from over a thousand subjects also highlight the existence 
of both left- and right-dominant intrinsic connectivity hubs 
rather than that of a global hemispheric lateralization in the 
human brain (Nielsen et al. 2013). In this context, it has been 
postulated, that the right-hemispheric dominance and the 
valence lateralization models may reflect different aspects 
of emotion processing, thus highlighting the need to move 
away from the concept of an overall hemispheric speciali-
zation and to elaborate on the hypothesis that emotions are 
the result of activations in networks which are interrelated, 
but may have differential lateralization patterns (Fusar-Poli 

et al. 2009a; Killgore and Yurgelun-Todd 2007; Neumann 
et al. 2008).

Along such lines of argument, a hemispheric functional-
equivalence hypothesis has recently been formulated to 
explain lateralization associated with the perception of emo-
tional and neutral faces (Stankovic 2021). It is a dynamic 
model proposing the existence of an initial default setting in 
which the brain would be right-biased in emotional and neu-
tral face perception, and this lateralization pattern would be 
maintained as long as environmental task demands remain 
low. However, since emotion perception should be viewed 
as a multi-layered phenomenon, increasing task demands 
would result in a redistribution of activity among the hemi-
spheres as an adaptive mechanism to ensure continued 
accurate and prompt responses (Stankovic 2021). Since 
environmental requirements are known to modulate psy-
chological modulators, this hypothesis would also explain 
how altered conditions such as acute stress could even result 
in a reversed lateralization. By proposing the functional-
equivalence of both hemispheres, the model also accounts 
for intersubject variability in lateralization patterns, as it 
has been demonstrated that not all individuals display the 
asymmetry predispositions identified at the population level 
(Frasnelli and Vallortigara 2018).

Finally, a recent data-driven meta-analysis revealed that 
the perception, experience and expression of emotion are 
each subserved by a distinct large-scale network (Morawetz 
et  al. 2020). Furthermore, three of these networks are 
composed of left-lateralized of bilaterally activated areas, 
whereas the fourth one contains left-lateralized, right-lat-
eralized and bilateral activations. This is particularly inter-
esting, given that the hemispheric functional-equivalence 
hypothesis of emotional face perception assumes an initial 
right-biased lateralization (Stankovic 2021), whereas the 
network that Morawetz et al. (2020) found to be associ-
ated with the perception of emotion (albeit not specifically 
in facial expressions) exhibits left-lateralized or bilateral 
activations. It thus appears necessary to not only abandon 
hypotheses supporting the concept of an overall hemispheric 
specialization, but to also move away from a global model 
of lateralization in emotion processing.
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