000903410 001__ 903410
000903410 005__ 20220131120405.0
000903410 0247_ $$2doi$$a10.1088/1367-2630/abaab0
000903410 0247_ $$2Handle$$a2128/29426
000903410 0247_ $$2altmetric$$aaltmetric:89597889
000903410 0247_ $$2WOS$$aWOS:000568310100001
000903410 037__ $$aFZJ-2021-05092
000903410 082__ $$a530
000903410 1001_ $$0P:(DE-HGF)0$$aQu, J. F.$$b0
000903410 245__ $$aRelativistic mid-wavelength infrared pulses generated in intense-laser mass-limited target interactions
000903410 260__ $$a[London]$$bIOP$$c2020
000903410 3367_ $$2DRIVER$$aarticle
000903410 3367_ $$2DataCite$$aOutput Types/Journal article
000903410 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639122148_27001
000903410 3367_ $$2BibTeX$$aARTICLE
000903410 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903410 3367_ $$00$$2EndNote$$aJournal Article
000903410 520__ $$aInfrared spectroscopy, ultra-fast x-ray high harmonic generation, and time-resolved imaging of molecular structures benefit from the availability of intense mid-infrared wavelength pulses. Here we present a new approach to generating these, in which an intense short laser pulse is incident upon a near-critical density, spherical, mass-limited carbon target. After the laser pulse interaction, the carbon ions produced form a central force field. Plasma electrons accelerated by the laser return to the positively charged carbon target under the action of this field. The energy of these electrons is reduced and is lower than their energy in the laser field. These low-energy refluxing electrons start to oscillate with a rotating figure-of-eight motion around the positively charged carbon target and emit relativistically intense mid-infrared pulses with the wavelength in the range 1 to 4 μm.
000903410 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000903410 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903410 7001_ $$0P:(DE-HGF)0$$aLiu, P.$$b1
000903410 7001_ $$0P:(DE-HGF)0$$aLiu, X. Y.$$b2
000903410 7001_ $$0P:(DE-HGF)0$$aGray, R. J.$$b3
000903410 7001_ $$00000-0001-8061-7091$$aMcKenna, P.$$b4
000903410 7001_ $$0P:(DE-Juel1)164830$$aLi, Xiaofeng$$b5$$eCorresponding author$$ufzj
000903410 7001_ $$0P:(DE-HGF)0$$aKawata, S.$$b6
000903410 7001_ $$00000-0001-7476-8571$$aKong, Q.$$b7$$eCorresponding author
000903410 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/abaab0$$gVol. 22, no. 9, p. 093007 -$$n9$$p093007 -$$tNew journal of physics$$v22$$x1367-2630$$y2020
000903410 8564_ $$uhttps://juser.fz-juelich.de/record/903410/files/Qu_2020_New_J._Phys._22_093007.pdf$$yOpenAccess
000903410 909CO $$ooai:juser.fz-juelich.de:903410$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903410 9101_ $$0I:(DE-HGF)0$$60000-0001-8061-7091$$aExternal Institute$$b4$$kExtern
000903410 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164830$$aForschungszentrum Jülich$$b5$$kFZJ
000903410 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern
000903410 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000903410 9141_ $$y2021
000903410 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000903410 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000903410 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903410 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000903410 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2019$$d2021-01-29
000903410 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29
000903410 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29
000903410 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000903410 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000903410 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000903410 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000903410 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903410 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000903410 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000903410 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000903410 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000903410 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000903410 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000903410 920__ $$lyes
000903410 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000903410 980__ $$ajournal
000903410 980__ $$aVDB
000903410 980__ $$aUNRESTRICTED
000903410 980__ $$aI:(DE-Juel1)JSC-20090406
000903410 9801_ $$aFullTexts