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A physical model is presented for the study of parametric instabilities in inertial confinement
fusion (ICF), which considers the coupling of the incident and scattered electromagnetic waves
with plasma electrons and ions. Specially, this model is solved numerically with the particle-mesh
method, where the plasma is represented by macro-particles both for electrons and ions, and the
velocity and position of each macro-particle are numerically updated by using the particle-mesh
method. The developed particle-mesh code in one-dimensional geometry (PM1D) is utilized to
study the development of parametric instabilities at the nonlinear stages, where electron plasma
wave breaking, particle trapping, hot electron generation and density cavity formation can occur.
Particle-in-cell (PIC) simulations are carried out to verify this PM1D code. By comparison, it
is found that this PM1D code is able to capture the kinetic effects and precisely describe the
developments of parametric instabilities at nonlinear stages as the PIC simulations while saving the
computation time obviously. Furthermore, a test simulation of the stimulated Raman scattering
evolution up to 200 ps verifies the robustness of this PM1D code.

PACS numbers: 52.38.Kd, 41.75.Jv, 52.27.Ny, 52.65.Rr

I. INTRODUCTION

In laser-drive inertial confinement fusion (ICF), laser
plasma instabilities (LPIs) such as stimulated Raman
scattering (SRS) and stimulated Brillouin scattering
(SBS) develop inevitably[1, 2]. The SRS and SBS not
only scatter significant amounts of incident laser energy
away from the fusion target, but also degrade the com-
pression symmetry of the target[3–5]. In addition, the
SRS can further produce hot electrons due to the wave
breaking or the Landau damping of the electron plasma
waves (EPWs), which will preheat the DT fuel and de-
crease the compressibility of the capsule[6–10]. In the
direct drive ICF, the SRS can induce the density cavities
at around the quarter critical density, which is found
to play an important role in the energy absorption of
driving lasers[11–13]. In general, the SRS and SBS have
significant impacts on the energy deposition of the driv-
ing lasers into the capsule and have become one of the
biggest obstacles for the realization of ignition in both
the direct and indirect laser-drive ICF. Therefore, the
evaluation of the impacts of LPIs on the ICF is crucial
for the implementation and interpretation of ICF related
experiments[14–18].

The numerical simulations can help to deepen the un-
derstanding of LPIs and evaluate the impacts of LPIs on
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the ICF, and thus they have received great attentions in
the past decades[19]. At present, the widely used nu-
merical tools for studying laser-plasma interactions can
be divided into two kinds: kinetic simulations and fluid
simulations[20]. To describe non-equilibrium processes,
the kinetic simulations such as particle-in-cell (PIC),
Vlasov, and Fokker-Planck simulations solve the parti-
cle dynamics in the phase space[21–26]. Therefore, they
are competent for the study of various nonlinear phenom-
ena and kinetic effects in the LPI development such as
plasma wave breaking[27, 28], particle trapping[29, 30],
Landau damping[31, 32], harmonic generation and cou-
pling of different LPI modes [33–35]. Because of their
huge computational costs, however, the kinetic simula-
tions are not suitable for the long-time simulations of
LPIs in large-scale plasmas[36].

In contrast, fluid simulations solve mass, momentum
and energy conservation equations by assuming that
the particles satisfy the equilibrium Maxwellian distri-
butions. Generally, fluid simulations cost much smaller
computational time than kinetic simulations. Therefore
the fluid simulations are more suitable for the macro-
scopic long-time simulations of LPI. For example, the flu-
ids codes PARAX[36], HERA[37], PF3D[38], LAP3D[39]
and so on are developed for the large-scale LPI simula-
tions. In these codes, the paraxial (envelope) approxi-
mation is adopted in the wave equations of the electro-
magnetic waves and the plasma waves in the correspond-
ing three-wave coupling models. The paraxial (envelope)
approximation makes it possible to employ a large space
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and time steps (several times larger than the laser wave-
length and cycle) in the simulations, and thus the com-
putational cost greatly decreases. Another kind of fluid
codes for the large scale simulations of LPI is based on
the ’harmonic decomposition’ method. The representa-
tive code is HARMONY1D/2D developed by Hüller et al
[40], which agrees well with the experiments in the study
of the SBS [41]. Recently, the fluid codes LPSE [42, 43]
and FLAME [44] are developed for the simulations of
cross beam energy transfer (CBET) and the interplay
of SRS and SBS in large scales. Since these two fluid
codes haven’t adopted the paraxial approximation, they
are able to capture more nonlinear phenomena of LPI
than the fluid codes based on the paraxial approxima-
tion. Due to the intrinsic shortage of the fluid model,
however, these fluid codes are hard to self-consistently
capture the kinetic effects such as wave breaking [27, 28],
particle trapping [29, 30], hot electron generation, and
Landau damping [31, 32] as well as some nonlinear phe-
nomena such as the formation of density cavity [11–13]
in the development of LPIs.

Therefore, it is of great significance to develop a phys-
ical model that is competent to simulate macroscopic
long-time LPIs and to describe most of kinetic effects
and nonlinear phenomena in LPIs simultaneously. In this
paper, we present a theoretical model and a numerical
method to study the SRS and SBS, where the plasma is
described with electron and ion macro-particles. The mo-
tions of all macro-particles are governed by the electron
and ion momentum equations, and the velocity and po-
sition of each macro-particle are numerically updated by
using the particle-mesh method. A particle-mesh code in
one dimension (PM1D) is then developed, which is able
to capture the kinetic effects and save the calculation
time simultaneously. The paper is organized as follows:
In Sec. II, the fluid model for the development of the
SRS and SBS is retrospected. The particle-mesh method
for the study of the SRS and SBS is described in Sec. III,
in which the plasma is represented by a large number of
macro-particles. The motions of macro-particles are gov-
erned by the momentum equations and are numerically
updated by using the particle-mesh method. The bench-
mark of the developed PM1D code by using particle-mesh
method is presented in Sec. IV. The reproduction of the
wave breaking and harmonic generation by the PM1D
simulations is illustrated in Sec. V, the simulation of
particle trapping is shown in Sec. VI, and the formation
of density cavities is illustrated in Sec. VII. The study of
convergency and stability of the PM1D code is shown in
Sec. VIII. Finally, Sec. IX summarizes the main results
with a discussion.

II. FLUID MODEL

In this section, the fluid model for both the SRS and
SBS is introduced and summarized. We firstly start from
the wave equation that governs the propagating of a laser

beam in plasmas[1],

(
∂2

∂t2
−∇2)a = −4π2nea, (1)

where a = eA/(mec
2) is the normalized vector poten-

tial, here A is the vector potential, me is the mass of
electron, e is the electron charge and c is the speed of
light in a vacuum. In Eq. (1), ne is the plasma elec-
tron density that is normalized to nc = ω2

0me/(4πe
2),

where ω0 is the frequency of the incident laser light. The
time and space in Eq. (1) are normalized to 2π/ω0 and
2πc/ω0 , respectively. It should be pointed out that the
incident and scattered laser lights are described together
in a single wave equation in this physical model, i.e.,
the laser intensity a in Eq. (1) is a superimposed field
of the incident laser intensity a0 and scattered laser in-
tensity a1 (a = a0 + a1). By doing so, one does not
need to separate the density components of the EPWs or
ion acoustic waves (IAWs) from the background electron
density. This is distinct from conventional three-wave
parametric models, where the separated density compo-
nents of the plasma waves are coupled with the incident
(scattered) laser light to act as the source term in the
wave equation for the scattered (incident) laser light[1].
However, when the background electron density or tem-
perature is initially inhomogeneous, the plasma thermal
pressure will also induce a density variation and then
make it rather difficult to identify the density compo-
nents of EPWs or IAWs. In contrast, if the incident and
the scattered laser lights are described together in a sin-
gle wave equation, the effects of the density variations
due to the plasma thermal pressure and the stimulated
plasma waves on the laser propagation can be treated to-
gether self-consistently as long as the total electron den-
sity is solved. However, this will lead to a numerical
difficulty by describing the incident and scattered laser
lights together in a single wave equation, i.e. the left
boundary condition of the wave equation should allow
the pump laser light to enter and the backscattered laser
light to exit freely simultaneously. The numerical scheme
for solving this boundary issue will be discussed in detail
in the next section.

As shown in Eq. (1), the propagating of the laser light
in a plasma mainly depends on the time evolution of the
total electron density, which can be obtained by solving
the fluid equations for the electrons. The dimensionless
momentum equation of electrons is [1]

∂ue

∂t
+

1

2
∇(ue ·ue) = 4π2E− 1

2
∇(a ·a)− 3v2eth

ne
∇ne, (2)

where the electron drift velocity ue and electron ther-
mal velocity veth are normalized to c, the electrostatic
field E induced by the charge separation is normalized
to 2πcω0me/e. In Eq. (2), the term 1

2∇(a · a) is the
complete ponderomotive force that includes the contri-
butions not only from the beat wave of the incident and
scattered laser lights, but also the uneven envelope of
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the incident laser beam. Therefore, Eq. (2) can be used
for the calculation of the typical LPI processes as well as
the density cavity formation induced by electromagnetic
soliton around the quarter-critical density in an inhomo-
geneous plasma[11]. In Eq. (2), the thermal pressure
term 3v2

eth

ne
∇ne is included to evaluate the temperature

effects on LPIs. The dimensionless continuity equation
for the electrons is [1]

∂ne

∂t
+∇ · (uene) = 0. (3)

Equations. (2) and (3) serve as the nonlinear fluid equa-
tions for the electrons.

To include the SBS into the physical model, the time
evolution of the ion density should be solved as well. The
dimensionless momentum equation of the ions is

∂ui

∂t
+

1

2
∇(ui · ui) = −4π2me

mi
E − v2ith

ni
∇ni, (4)

where the ion drift velocity ui and the ion thermal ve-
locity vith are both normalized to c, the ion density ni

is normalized to the critical density nc, the ion mass mi

is normalized to me. In Eq. (4), the electrostatic force
−4π2me

mi
E is the main driving force for the SBS. The ion

thermal pressure term v2
ith

ni
∇ni is also included to evalu-

ate the ion temperature effects on the LPIs. The dimen-
sionless continuity equation for the ions can be written
as

∂ni

∂t
+∇ · (uini) = 0, (5)

Equation (4) and (5) are the nonlinear fluid equations for
the ions, so that the nonlinear evolution of IAWs can be
simulated.

In the above model, the precise calculation of the elec-
trostatic field is crucial, since it not only determines the
frequency of the EPWs for the SRS development but also
transfers the ponderomotive force acting on the electrons
to the ions in the SBS development. The dimensionless
electrostatic field satisfies the following equation

∇ · E = ni − ne, (6)

To sum up, the unified nonlinear fluid model for the
SRS and SBS can be written as

( ∂2

∂t2 −∇2)ay = −4π2neay,

( ∂2

∂t2 −∇2)az = −4π2neaz,
∂ne

∂t +∇ · (uene) = 0,
∂ue

∂t + 1
2∇(ue · ue) = 4π2E

− 1
2∇(ay · ay)− 1

2∇(az · az)− 3v2
eth

ne
∇ne,

∂ni

∂t +∇ · (uini) = 0,
∂ui

∂t + 1
2∇(ui · ui) = −4π2me

mi
E − v2

ith

ni
∇ni,

∇ · E = ni − ne,

(7)

where ay and az denote the normalized vector potentials
along two vertical directions of y and z, respectively, as-
suming the propagating direction to be along the x-axis.

By doing so, the equation set (7) can be adopted for the
study of the laser polarization effects on the LPI.

III. PARTICLE-MESH METHOD

The momentum and continuity equations for the elec-
trons (and ions) in Eq. (7) can be numerically solved on
the Eulerian coordinate by the finite difference method
directly. However, in the LPI development, the electrons
(or ions) will cross each other and induce the breaking of
the plasma waves [27, 28, 45]. The wave breaking may
cause the saturation of the LPI as well as the produc-
tion of the hot electrons, and hence it is important to
treat the wave breaking properly [9, 10]. However, the
wave breaking cannot be described by the finite differ-
ence method on the Eulerian coordinate, since the fluid
element is not allowed to cross each other in this method.
Further, other kinetic effects such as particle trapping in
the LPIs cannot be captured by the Eulerian-coordinate-
based numerical method as well.

Therefore, we utilize the particle-mesh (PM) method
[46] to simulate the plasma dynamics rather than solve
the fluid equations of Eq. (7) directly. In the PM
method, the simulation box is divided into fixed fluid
grids, but the plasma is represented by a large number
of macro-particles that are initially distributed uniformly
in the grids. Individual macro-particles are driven to
move by the fluid force that is defined by the electron or
ion momentum equation of Eq. (7). Due to the macro-
particles can move freely, the crossing and trapping of
macro-particles are allowed. Therefore, it is able to cap-
ture the kinetic effects such as particle trapping and hot
electron generation. On the other hand, since the macro-
particles are driven by the fluid force in the PM method
rather than the Lorentz force, the numerical heating in
the PM method is relatively weak even with a small num-
ber of macro-particles per grid. Therefore, the macro-
particle number per grid (cell) used in the PM method
can be greatly decreased in comparison with that typi-
cally used in the conventional PIC method. As a result,
the PM1D code costs much less simulation resources than
the conventional PIC codes, while being able to capture
the kinetic effects.

A. Numerical algorithm for plasma dynamics

In the PM1D code, the electron and ion macro-
particles are initially distributed evenly within the grids
with zero velocities, that is

v0sk = 0, k = 1 . . .M, s = e, i,
x0
sk = x0

s1 +
dx
P (k − 1), k = 1 . . .M, s = e, i,

(8)

where v0sk and x0
sk are the initial velocity and position of

the k-th macro-particle, s denotes the particle species of
ions or electrons, P and M are the macro-particle num-
bers for the s-th particle species in each grid and the
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entire simulation box, respectively. For an initial elec-
tron or ion density n0

s(x) , the density fraction for the
k-th macro-particle of the s-th species can be written as

wk
s =

n0
s(x

0
sk)

P
, s = e, i, (9)

The density fractions of every maro-particles keep un-
changed in the simulation, which guarantees the con-
tinuity equation of Eq. (7). The electron or ion den-
sity distribution on the grids can be obtained by the
interpolation method according to the positions of the
macro-particles[47]. The total driving forces are firstly
calculated on the grids and then interpolated to macro-
particles. Assuming the total driving forces for the elec-
tron and ion particles are Fe and Fi, respectively, then
we have

Fe = 4π2E − 1
2∇(a · a)− 3v2

eth

ne
∇ne,

Fi = −4π2me

mi
E − v2

ith

ni
∇ni.

(10)

The driving forces of Eq. (10) can be discretized as fol-
lows

Fn
ej = 4π2En

j − anj
an
j+1−an

j−1

2dx − 3v2
eth

nn
ej

nn
ej+1−nn

ej−1

2dx ,

Fn
ij = −4π2me

mi
En

j − 3v2
ith

nn
ij

nn
ij+1−nn

ij−1

2dx ,
(11)

where Fn
ej and Fn

ij are the total driving force to the elec-
trons and ions at the j-th point and the n-th time step,
respectively.

After the driving forces for the k-th macro-particle of
the s-th species at the n-th time step Fn

s (x
n
sk) are ob-

tained by the interpolation method, the position and ve-
locity of the k-th macro-particle can then be updated for
the (n + 1)-th time step by the following second order
Runge-Kutta method [48], that is

v
n+1/2
sk = vnsk + dtFn

s (x
n
sk),

x
n+1/2
sk = xn

sk + 1
2dt(v

n+1/2
sk + vnsk),

vn+1
sk = 1

2 (v
n+1/2
sk + vnsk) +

1
2dtF

n+1/2
s (x

n+1/2
sk ),

xn+1
sk = xn

sk + 1
2dt(v

n
sk + v

n+1/2
sk ), s = e, i

(12)

where xn+1
sk and vn+1

sk are the position and velocity of the
k-th particle at the (n+ 1)-th time step of s species, re-
spectively, while x

n+1/2
sk and v

n+1/2
sk are the intermediate

variables of position and velocity for the k-th particle,
respectively.

B. Numerical algorithm for wave equation

To calculate the vector potential a, the wave equation
of Eqs. (7) are discretized by the typical central differ-
ence method as [49],

an+1
j − 2anj + an−1

j

dt2
−

anj+1 − 2anj + anj−1

dx2
= −4π2nn

eja
n
j ,

(13)

FIG. 1. The schematic diagram for the left boundary con-
dition of the wave equation. The relationships between the
right-traveling and left-traveling waves at the points j = 0
and j = 1 at different time steps of n − 1, n, and n + 1 are
illustrated.

where dt and dx are respectively the time and space steps,
the subscript j and the superscript n respectively denote
the j-th grid point in space and the n-th time step. The
vector potential a at the (n + 1)-th time step can be
updated according to Eq. (13) as long as the electron
density at the n-th time step is already known. To solve
the wave equation, the boundary condition for the elec-
tromagnetic field is also necessary. As mentioned above,
when the incident and scattered laser lights are described
together in a single wave equation, the left boundary
should allow the incident laser to enter the simulation
box and the backscattered laser to exit the simulation
box freely. To this end, the simulation box is divided
into three parts, including a central plasma slab and two
vacuum regions on two sides. In two vacuum regions, the
dimensionless speed of the laser light is 1, which makes
it convenient to set the boundary condition for the elec-
tromagnetic field. For example, we assume that the left
boundary is located at the point of j = 0 and the vector
potential on the boundary at the (n + 1)-th time step
is an+1

0 . For convenience, the vector potential on the
boundary at the (n+1)-th time step can be divided into
two parts as

an+1
0 = an+1

0R + an+1
0L , (14)

where an+1
0R and an+1

0L are the vector potentials of the right
and left traveling waves on the boundary, respectively. In
the case of dx = dt, the propagating distance of a laser
light in a vacuum within a time step is just dx. Thus,
the vector potential of the left traveling wave at the point
j = 0 and the (n+1)-th time step is just its value at the
point j = 1 and the n-th time step as shown in Fig. 1,
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namely

an+1
0L = an1L. (15)

Similarly, the vector potential at the point j = 1 and
n-th time step can also be divided into the left and right
traveling wave components, so we have

an1L = an1 − an1R, (16)

where an1 denotes the total vector potential at the point
j = 1 and the n-th time step, an1L and an1R are left and
right traveling waves components, respectively. As shown
in Fig. 1, the right traveling wave component an1R is
exactly the vector potential of the right traveling wave
at the point j = 0 and (n− 1)-th time step, that is

an1R = an−1
0R . (17)

Combing Eqs. (14-17), the left boundary condition in
the case of dt = dx can be written as

an+1
0 = an+1

0R + an1 − an−1
0R , (18)

where the right traveling wave components an+1
0R and

an−1
0R are the incident pump laser light, and the vector

potential at the point of j = 1 and n-th time step an1 is
already obtained in the last loop. Similarly to Eq. (18),
the left boundary condition in the general case of dt ̸= dx
can be derived as

an+1
0 = an+1

0R +
dt

dx
(an1 − an0 ) + an0 − an−1

0R . (19)

Similarly, the right boundary can also be set to al-
low the right traveling waves to be absorbed and the left
traveling waves to be input, namely

an+1
H+1 = an+1

(H+1)L +
dt

dx
(anH − anH+1) + anH+1 − an−1

(H+1)L,

(20)
where the subscript of (H + 1) is the right boundary
point.

C. Program flow

To sum up, the plasma dynamics and the wave equa-
tion in the PM1D can be solved as follows:

1. Calculate the vector potential of a at the (n+1)-th
time step using Eq. (13) combing with the corresponding
boundary conditions Eqs. (19) and (20).

2. Calculate the electron and ion density distribution
by depositing all macro-particles onto the grids using the
interpolation method.

3. Obtain the electrostatic field by solving Eq. (6).
4. Calculate the total forces on the grids using Eq.

(11), and interpolate the driving force to every macro-
particle.

5. Calculate the velocity and position of all macro-
particles at the (n+ 1

2 )-th time step by Eq. (12).

6. Repeat steps 2 and 4 using the intermediate particle
positions to get the newly driving forces acting on the
macro-particles.

7. Calculate the velocity and position of all macro-
particles at the (n+ 1)-th time step by Eq. (12).

8. Repeat steps 1-7 until the final time arrives.

D. Differences among PM1D, PIC and fluid codes

In the PM1D code, the plasmas is treated as a gather of
macro-particles. The motion of macro-particles is calcu-
lated according to the momentum equations in Eq. (7).
Actually, the left terms ∂u

∂t +
1
2∇(u ·u) in the momentum

equations of Eq. (7) is the total derivative of a particle
velocity versus time. Therefore, the right terms of the
momentum equations in Eq. (7) are the drive forces for
a single macro-particle. In the simulations, these driving
forces are firstly calculated on the fixed meshes. Then
the total force acting on a macro-particle is obtained by
the interpolation method and the particle velocity at the
next time step is calculated using Eq. (12).

In the PIC code (e.g. EPOCH code), the velocities of
macro-particles are calculated according to the following
equation [47]

Pn+1
α = Pn

α + qα∆t[En+1/2 + vn+1/2
α × Bn+1/2], (21)

where qα is the particle’s charge, Pα is the particle mo-
mentum, and vα is the particle velocity. Here the particle
velocity of vα can be calculated using Pα = γαmαvα,
where γα = [(Pα/mαc)

2 + 1]1/2 is the relativity factor
and mα is the particle mass. From Eq. (21), one can
find that in a typical PIC code the macro-particles are
driven to move by the Lorentz force, while in the PM1D
code the macro-particles are driven to move by the fluid
forces of Eq. (10). This is the main difference between
the PIC code and PM1D code.

In the typical wave coupling method [36–39, 42–44],
the finite difference methods are adopted to solve the
fluid equations directly. In contrast, the PM1D code
does not directly solve the fluid equations for the plasma
dynamics. Instead, the plasma is represented by a gather
of macro-particles in the PM1D code, and the motion
of these macro-particles is numerically updated by the
particle-mesh method. More importantly, since the elec-
tron and ion macro-particles can move freely in the
particle-mesh method, various kinetic effects can be self-
consistently treated in the PM1D code.

IV. BENCHMARK OF PM1D CODE

To verify the PM1D code, we firstly compare the linear
growth rates of both the SRS and SBS obtained from our
PM1D simulations with theoretical estimations. For the
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FIG. 2. (a) The snapshots of the chosen wave packet of the EPW at four different times. (b) The black line and red line show
the time evolution of the peak amplitude of the chosen wave packet and its logarithm, respectively (c) The linear SRS growth
rates (2πγR ) as a function of the electron density obtained from the PM1D simulations (red points for a0 = 0.02 and black
points for a0 = 0.04) are compared with the theoretical results estimated by Eq. (22)(red line for a0 = 0.02 and black line for
a0 = 0.04). The initial electron temperature is set as 1 keV and ions are assumed to be immobile. (d) linear SBS growth rates
(2πγB) as a function of the electron density obtained from the PM1D simulations (the purple points for a0 = 0.04 and the blue
points for a0 = 0.06) are compared with the theoretical results estimated by Eq. (23) (the purple line for a0 = 0.04 and the
blue line for a0 = 0.06). The initial electron temperature is set as 1 keV and the ions are assumed to be cold initially.

SRS, the theoretical growth rate γR in the linear stage
can be expressed as [1]

γR =
ka0
4

[
ω2
pe

ωek(ω0 − ωek)
], (22)

where γR is normalized to ω0, a0 is the normalized vec-
tor potential of pump laser light, k is the wave num-
ber of the EPW, ωpe is the plasma frequency and ωek =√

ω2
pe + 3k2v2eth. The growth rate of the SRS in Eq. (22)

is actually defined as the growth rate of the EPW ampli-
tude. So for comparison, the growth rate of the EPW am-
plitude should be extracted from the PM1D simulation
results. As displayed in Fig. 2(a), the strongest packet
of the EPW is firstly recognized at different times in a
typical PM1D simulation with the normalized laser vec-
tor potential a0 = 0.04, the electron density ne = 0.05nc

and temperature Te = 1 keV (corresponding to the far
left black point in Fig. 2(c)). Then, the time evolution
of the peak amplitude of the EPW can be obtained as
the black curve in Fig. 2(b). If the peak amplitude of
the EPW grows exponentially, then the logarithm of the
EPW peak amplitude should be a straight line whose
slope corresponds to the growth rate of the SRS. In Fig.
2(b), the logarithm of the EPW peak amplitude is drawn
as a red line, which has a slope about 0.0545 between

t = 465T0 and 515T0. The numerical growth rate de-
fined by this slope is coincident with the theoretical re-
sult 2πγR = 0.0542 estimated by Eq. (22). Similarly, the
growth rate of the SBS can be estimated as the growth
rate of the peak amplitude of an ion acoustic wave packet
obtained from the PM1D simulation.

In Fig. 2(c), the SRS growth rates obtained from the
PM1D simulations (discrete points) are compared with
the theoretical results estimated by Eq. (22) (lines).
It can be found that the quantitative agreement in the
growth rate is achieved between the PM1D code and the
theory, indicating that the PM1D code is competent for
the precise calculation of the SRS.

For the SBS, the linear growth rate γB can be ex-
pressed as [1],

γB =
1

2
√
2

k0a0ωpi√
ω0k0Cs

, (23)

where γB is normalized to ω0, k0 and ω0 are respectively
the wave number and frequency of the pump laser light
in the plasma. ωpi = ωpe

√
Zme/mi with the ion charge

Z = 1, and Cs =
√
ZTe/mi is the ion acoustic velocity.

As shown in Fig. 2(d), the SBS growth rates calculated
by the PM1D code (discrete points) also agree quanti-
tatively with those estimated by Eq. (23) (lines), which
demonstrates the capability of the PM1D code in the
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FIG. 3. (a) and (c) show the time evolution of EPWs (where ne1 denotes the fluctuating electron density) calculated by PIC
code and PM1D code, respectively. The slope of the white arrow in (a) and (c) show the phase speed of EPWs. (b) and (d)
shows the time evolution of the wave-number spectrum of the EPWs in (a) and (c), respectively, where kp is the theoretical
wave number of the EPW. The 1st, 2nd and 3rd-order harmonics of the EPWs can be found in the wave-number spectrum. (e)
The snapshot of the EPW at the times that are signed by the black (t = 505T0 before the wave breaking) and the red(t = 534T0

after the wave breaking) arrows in (c). (f) The x − vex phase space of the electron macro-particles in (e). The hot electron
generation after the wave breaking is illustrated.

precise calculation of the SBS.

V. SIMULATION OF WAVE BREAKING

With the developing of the SRS, the amplitude of the
EPW excited by SRS will reach a peak value and then
start to decay due to the wave breaking. Along with
the saturation of the SRS [28, 45], the wave breaking
will also induce the generation of hot electrons [9, 10]
and the bursting behavior of the reflectivity of SRS[50].
Therefore, the breaking process of the EPW is crucial
for the evolution of the SRS and should be included
properly in the physical model. In our PM1D code, the
electron and ion fluids are represented by freely mov-
ing macro-particles, which can be used to simulate the
wave-breaking process. To verify this, a test simulation
is carried out, in which the simulation box has a total
length of 300λ with a length of 20λ vacuum in each side,
here λ is the incident laser wavelength in a vacuum. A
hydrogen plasma slab is located within 20λ ≤ x ≤ 280λ,
the plasma slab has a length of 10λ density slopes on
both sides, and the electron density ne = 0.1nc at the
flat-top. The initial electron temperature is set as 2 keV
and the ions are assumed to be immobile. The incident
laser light has an intensity of 1.78 × 1016 W/cm2 and a
wavelength of 351 nm, correspondingly a0 = 0.04. The
time and space steps are set as 0.0495T0 and 0.05λ, re-
spectively, and 5 macro-particles are allocated for each
grid. For comparison, a PIC simulation is carried out

using the EPOCH code[47], where the laser and plasma
conditions keep the same as adopted in the PM1D sim-
ulation. The space step of PIC simulation is dx = 0.01λ
and 600 macro-particles are set in every grid.

Figure 3(a) shows the time evolution of the EPW
within 110λ ≤ x ≤ 114λ calculated by the PIC code. It
can be found that the EPW moves to the right at a nearly
constant phase velocity of vp ≃ 0.231c, which agrees well
with the theoretical estimate vp ≃ 0.236c. More impor-
tantly, the EPW begins to collapse at t ≥ 360T0, which
implies the occurrence of the wave breaking. Correspond-
ingly, the time evolution of the wave number spectrum of
the EPW is shown in Fig. 3(b), in which the 2nd and 3rd
order harmonic generations of the EPW are evidenced.

In Fig. 3(c), the time evolution of the EPW within
170λ ≤ x ≤ 174λ calculated by PM1D code is shown
during the development of the backward SRS. It can
be found that the EPW moves to the right at a nearly
constant phase speed of vp ≃ 0.233c, which agrees well
with the theoretical phase speed 0.2358c. More impor-
tantly, the EPW amplitude grows continuously before
t ≃ 510T0, then the EPW reaches its peak amplitude and
starts to break up. After the wave breaking (t > 520T0),
the EPW will become relatively weak, resulting in an
obvious decrease of the SRS reflectivity (i.e. the satura-
tion of SRS). After that, new EPW packets may start to
form, which will induce a considerable reflectivity again.
Namely, the SRS reflectivity varies with the growing and
collapsing of the EPW, which results in the bursting be-
havior of the SRS reflectivity[50] . Correspondingly, the
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FIG. 4. (a) The velocity distribution of electrons at 1000T0.
The black arrow shows the phase speed of the EPW. (b) The
phase space of electrons within 60λ < x < 75λ at 1000T0.

time evolution of the wave-number spectrum of the EPW
in Fig. 3(c) is displayed in Fig. 3(d). It is illustrated that
the EPW has a single wave number before t = 490T0,
and later the 2nd and 3rd order harmonics appear se-
quentially. The harmonic generation of EPW is a typ-
ical nonlinear phenomenon, which can also appear for
the IAWs in the SBS [33–35, 51]. The higher-order har-
monics of EPW do not satisfy the resonance condition
of the SRS and will further induce a frequency shift[52].
Therefore, the harmonic generation of the EPW is one
of the saturation mechanisms for the SRS. Further, the
wave-number spectrum becomes broader after the wave
breaking (t > 510T0), indicating the collapse of the EPW.

From the above comparison, it is found that the time
evolution of EPW and its harmonic generation calculated
by the PM1D code agree well with those calculated by
the PIC code, which further demonstrates the capability
of the PM1D code in simulating kinetic effects and non-
linear phenomena in the LPI development. However, it
should be pointed out that the harmonic generation as
well as the collapse of the EPW happen in an earlier time
in the PIC simulation, this might be due to the higher
density noise in the PIC simulations.

In Fig. 3(e), we display the snapshots of the EPW at
the times that are marked by the black (t = 505T0 be-
fore the wave breaking) and red (t = 534T0 after the wave
breaking) arrows in Fig. 3(c), respectively. It should be
pointed out that the EPW still shows a periodic pertur-
bation at t = 505T0 before the wave breaking, but it is

no longer in cosine form due to the harmonic generation.
In contrast, the EPW seems more chaotic at t = 534T0

after the wave breaking. Correspondingly, the electron
distribution in the x − vex phase space before and after
the wave breaking are compared in Fig. 3(f). It can
be found that the electrons are distributed in order in
the space with gentle velocities before the wave break-
ing (t = 505T0). After the wave breaking, the electrons
lost their spatial orders and some of the them are ac-
celerated to high velocities (ve > 0.4c). In other words,
the hot electrons (Te > 100kev) are generated due to the
wave breaking. It should be pointed out that those hot
electrons are accelerated efficiently from a relative low
velocity of about 0.1c to over 0.4c within 30T0 (35 fs) in
the wave breaking process. In addition, Fig. 3(f) indi-
cates that the hot electrons move in the same direction
with the EPW.

VI. SIMULATION OF PARTICLE TRAPPING

In the high-temperature plasma conditions relevant
to ICF experiments, the particle trapping and Landau
damping are the most important kinetic effects in the
development of the LPIs. Therefore, a highly reliable
LPI simulation tool should include these kinetic effects.
The cause of the particle trapping and Landau damping
is that the particles with velocities closed to the EPW
phase speed will be captured and accelerated (or decel-
erated) by the electrostatic field of the EPW [1]. There-
fore, when driving forces of the electron macro-particles
include the electrostatic force (as shown in Eq. (10)) and
the macro-particles can move freely, the particle trapping
and Landau damping can be treated self-consistently. To
verify this, a test simulation is performed, in which the
electron density ne = 0.09nc, the electron temperature
Te = 1 keV, the laser intensity a0 = 0.02 and the ions
are assumed to be immobile. The plasma has a total
length of 400λ, and the space step is dx = 0.05λ with 50
macro-particles per grid.

Figure 4(a) shows the velocity distribution of the elec-
trons in the whole simulation domain at t = 1000T0. It is
clear that the electron velocity distribution becomes flat
at around the phase speed of the EPW, which indicates
the obvious particle trapping of the electrons during the
SRS evolution [30, 50]. Figure 4(b) shows the phase space
of the electrons within 60λ < x < 75λ at t = 1000T0,
which clearly demonstrates the hot electron generation
as well as the electron trapping. The simulation results
in Fig. 4 indicates that the PM1D code is able to capture
the kinetic effects such as particle trapping as the PIC
codes.
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FIG. 5. The time evolutions of the ion densities within 80λ ≤ x ≤ 180λ during the density cavity formation that are obtained
from the PM1D (a) and PIC (b) simulations. The corresponding frequency spectra of the backscattered lights are displayed in
(c) and (d), respectively.

VII. SIMULATION OF DENSITY CAVITY
FORMATION

In the direct-drive ICF, the SRS at around the quarter-
critical density becomes an absolute instability[53], and
the scattered laser light has a central frequency of 0.5ω0.
According to the dispersion relation, the backscattered
laser light will have a zero wave number and can be
trapped as an electromagnetic soliton at this position.
Due to the continuous energy pumping from the incident
laser light, the trapped backscattered laser light is con-
tinuously enhanced, whose strong ponderomotive forces
will push away the ions to form density cavities[11, 12].
To simulate the formation of the density cavity, the pon-
deromotive force of a laser beam with an uneven envelope
in space should be included in the physical model. In the
PM1D code, a complete form of the ponderomotive force
is employed, thus it should simulate the density cavity
formation properly.

To verify this, a test simulation is carried out. In the
simulation, an inhomogeneous plasma slab with a linear
density profile ranging from 0.22nc to 0.28nc is adopted,
the plasma slab has a length of 220λ with a 10λ up-ramp
at the left and a 10λ density down-ramp at the right.
The total length of the simulation box is 340λ with a 60λ
vacuum in each side. The electron and ion initial temper-
atures are set as 1keV and 0.1keV, respectively. The inci-
dent laser light has an intensity of 1×1016 W/cm2 and a
wavelength of 351 nm, the corresponding normalized vec-
tor potential a0 = 0.03. The time step was dt = 0.019T0,
the grid size dx = 0.02λ, and 10 macro-particles per grid
are used in the PM1D code. For comparison, a PIC sim-

ulation is carried out using the EPOCH code[47]. Except
that 400 macro-particles per cell are used in the PIC sim-
ulation, the spatial and temporal resolutions and laser-
plasma parameters are the same as those in the PM1D
simulation.

Figures 5(a) and 5(b) compare the time evolutions
of the ion densities within 80λ ≤ x ≤ 180λ (cor-
responding to background plasma density varies from
0.223nc − 0.253nc) obtained from the PM1D and PIC
simulations. It is illustrated that many plasma density
cavities emerge after 1500T0, and then the ion densities
in the cavities gradually decrease to zero. Meanwhile,
the widths of the density cavities increase gradually and
some cavities may merge with the adjacent cavities. As
shown in Figs. 5(a) and 5(b), both the PM1D and PIC
simulations can capture the formation of the density cav-
ities, and output similar results.

Figures 5(c) and 5(d) show the time evolutions of the
frequency spectra of the backscattered laser lights calcu-
lated by the PM1D code and PIC code, respectively. It
indicates that the SRS firstly develops for t < 2500T0,
but later the SBS becomes dominant and the SRS nearly
disappears during 2500T0 < t < 6000T0. More interest-
ingly, both the PM1D and PIC simulations show that
the backscattered SRS lights will grow up again after
t = 6000T0 , because of the collapse of the density cavi-
ties.

Along with the formation of the plasma density cav-
ity, many other nonlinear effects could also play an im-
portant role in the development of parametric instabil-
ities near the quarter-critical density. For example, it
was found that the Langmuir decay instability (LDI),
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FIG. 6. (a) The intensity envelopes of the backscattered laser
lights with different macro-particle numbers per grid varying
from 4 to 20. The blue line titled ’Mon’ (Monochromatic
light) shows the intensity envelope of the incident laser light.
(b) The reflectivity due to the LPIs with different macro-
particle numbers per grid.

anti-Langmuir decay instability (ALDI), and Langmuir
wave collapse near the quarter-critical density can cause
the saturation of the backward SRS[54, 55]. In two-
dimensional geometry, the two plasmon decay (TPD) in-
stability that induces the efficient generation of hot elec-
trons near the quarter-critical density will also compete
with the SRS instability [12, 56].

VIII. NUMERICAL CONVERGENCE AND
STABILITY

In the PM1D code, the electrons and ions are treated
as macro-particles that are driven by the fluid forces.
The number of macro-particles set in each grid may have
some impacts on the simulation results. To get the de-
pendence of the solution accuracy on the used macro-
particle number, a series of simulations are carried out
with the macro-particle number per grid varying from 4
to 20, while the laser vector potential a0 = 0.03 and the
plasma density ne = 0.4nc remains constant. The sim-
ulation box has a total length of 300λ with 40λ vacuum
in each side. A homogeneous plasma slab with a length
of 220λ at the center of the simulation box with a 10λ
density slope density slope in each side. The electron
and ion initial temperatures are set as 1 keV and 100 eV,
respectively. In the simulations, the grid size is set as
0.05λ and the time step is chosen as 0.0495T0. The par-

ticle number per grid is the only variable parameter in
these simulations that varies from 4 to 20 evenly with a
step of 2.

Figure 6(a) shows the intensity envelopes of the
backscattered lights obtained from the PM1D simula-
tions with different macro-particle numbers. It is demon-
strated that the intensity envelopes of the backscattered
lights in all cases have a similar evolution tendency. In
particular, there are nearly no differences between the
results if the macro-particle number per grid is larger
than 8. Figure 6(b) shows the total reflectivity within
2000T0 due to the LPI with different particle numbers
per grid. It is illustrated that the reflectivity quickly con-
verges to about 0.637 with the increasing of the macro-
particle number, and there is nearly no difference in the
reflectivity if the macro-particle number per grid is larger
than 8. It should be pointed out that the relative error
of the reflectivity between the smallest particle number
(4) and the maximum particle number (20) is only about
2.3%, which indicates that in the large scale simulations,
a small particle number per cell can be adopted to save
the simulation time and keep the expected accuracy of
the solution simultaneously.

The LPIs in the ICF experiments generally develop in
nanoseconds in time and several hundreds of microns in
space. Therefore, the nonlinear simulation of the whole
LPIs evolution will result in a huge computational cost
and is unable to be performed by the typical kinetic codes
like PIC or Vlasov even in one dimension. In the PM1D
code, the particle number per grid can be greatly de-
creased comparing with the PIC codes while captures
the kinetic effects simultaneously, which makes it pos-
sible to simulate large-scale long-time evolution of LPIs.
In the long-time simulations of LPIs, however the numer-
ical stability (the simulation results keep physical after a
long time calculation) of the code becomes particularly
important.

To verify the stability of the PM1D code, a test simu-
lation is carried out for the time evolution of the SRS up
to 200ps. In the simulation, a homogeneous plasma slab
with a length of 300λ and density of 0.09nc is adopted.
The ions are assumed to be immobile and the initial elec-
tron temperature is 1 keV. The incident laser light has
an intensity of 4.45 × 1015 W/cm2 and a wavelength of
351 nm, the corresponding normalized vector potential
is a0 = 0.02. The time step dt = 0.0495T0, the grid size
dx = 0.05λ , and 4 macro-particles per grid are adopted
in the PM1D code. For comparison, two PIC simula-
tions are also carried out for the time evolution of the
SRS up to 200ps, where the laser and plasma conditions
keep the same as in the PM1D simulation and the grid
size is dx = 0.01. In these two PIC simulations, 100 and
200 macro-particles are allocated per grid, respectively.

In Fig. 7(a), the spectrum of the backscattering SRS,
the secondary scattering of SRS (the forward scattering
of the primary backscattered light) as well as the anti-
Stokes SRS can be identified in the long-time evolution
of the backscattered light spectrum. More importantly,
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FIG. 7. (a) and (b) show the time evolution of the backscattering light spectrum in the evolution of the SRS up to 200ps
calculated by the PM1D code and PIC code using 200 macro-particles per grid, respectively. (c)and (d) show the time evolution
of the SRS reflectivity calculated by the PM1D code and PIC code (red line for 100 particles per grid and black line for 200
particles per grid), respectively.

the time evolution of the reflectivity of the SRS in Fig.
7(c) also illustrates a character of the bursting behavior
of the SRS reflectivity. The average reflectivity within
200ps is about 23.2%. This simulation demonstrates the
numerical stability of the PM1D code for the long-time
evolution of the LPIs.

Figure 7(b) shows the spectrum of the backscattering
SRS simulated by the EPOCH code using 200 macro-
particles per grid, it can be found that the backscatter-
ing spectrum becomes very weak for t ≥ 10ps, which is
unreasonable in physics. From the time evolution of the
SRS reflectivity displayed in Fig. 7(d), it is also con-
firmed that the SRS reflectivity drops sharply to zero
after t = 10ps using either 200 or 100 macro-particles
per grid. Here, we only show the SRS reflectivity before
t = 30 ps since the reflectivity is almost zero after 30
ps. These simulation results indicate that the PIC code
may not be suitable to simulate the long-time evolution
of the SRS. Namely, the PIC code may not be numer-
ically stable enough for the long time simulation of the
SRS. The collapse of the PIC simulation might be due
to the artificial electron heating in the long-time simula-
tion process. Nevertheless, the averaged SRS reflectivity
obtained from the PIC simulations within their reliable
time are 0.192 and 0.216 for 100 and 200 macro-particles
per grid, respectively. These two reflectivities are at the
same level as the reflectivity obtained from the PM1D
simulation. From Fig. 7(d), it is also found that the
collapse of the PIC simulation can be slightly postponed
by increasing macro-particle number per cell from 100

to 200. This implies that a huge macro-particle number
may be helpful to the numerical stability of the PIC code.

Although the collapse of the PIC simulation might be
caused essentially by the artificial electron heating, it is
worth pointing out that the collapse time of the PIC
simulation also depends on the boundary conditions as
well as the laser-plasma parameters such as laser inten-
sity. In the above PIC simulations, a finite homogeneous
plasma with sharp plasma-vacuum interfaces is placed at
the center of the simulation box, and the open bound-
ary condition is adopted for the macro-particles at the
boundary of the simulation box. The strong sheath fields
near the plasma-vacuum interfaces in this case may drag
back the hot electrons, therefore, some electrons will suf-
fer the artificial heating several times. As a result, the
collapse of the PIC simulation is speeded up. In another
test simulation case using a semi-infinite homogeneous
plasma with a thermal boundary condition, the energetic
electrons that run away from the right boundary are re-
placed by the electrons with the initial temperature. By
doing so, we find that the collapse of the PIC simulation
can be postponed to about 20ps. We also note that the
PIC simulation of LPIs can run steady for a longer time
with a relatively low laser intensity [57, 58].

In contrast, the numerical heating in the PM1D code
is relatively weak since the macro-particles are driven by
the fluid force in the PM1D code rather than the Lorentz
force. As a result, our PM1D code can operate steady at
least up to 200 ps even using only 4 macro-particle per
grid, which is crucial for decreasing the computational
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cost in the large-scale long-time simulations of the LPIs.
In Fig. 7, the long-time evolution of SRS is adopted to

show the stability of the PM1D code, where the ions are
assumed to be immobile. In the real cases, the ions are
mobile, which will induce the SBS instability. When SBS
and SRS are concomitant, the competition or interplay
between these two instabilities may take place [59]. In
particular, the backward scattering light of the absolute
SRS at around ne = 0.2nc may excite the SBS instability,
which in turn becomes an important saturation mecha-
nism of the backward SRS [57]. Further, the interplay
between SRS and SBS can be utilized to weaken the to-
tal reflectivity of the pump laser light. For example, the
total reflectivity can be decreased obviously if 2ω and 3ω
lasers are incident together into the plasma under a spe-
cial energy ratio, which provides a potential mechanism
for the suppression of LPI in ICF [58].

IX. DISCUSSION AND SUMMARY

In summary, a PM1D code has been developed by us-
ing the particle-mesh method for the simulation of the
SRS and SBS in laser-plasma interactions. Since the
plasma is represented by freely-moving macro-particles
in the PM method, this PM1D code can self-consistently
simulate the breaking of plasma waves as well as other
kinetic effects in the development of the LPIs. By de-
signing a novel boundary condition that allows the inci-
dence of the pump laser light and the emergence of the
scattered light simultaneously, the incident and scattered
laser lights can be described together in a single wave
equation. This makes it convenient to get the complete
form of the ponderomotive force in the electron motion
equation, and hence the strongly nonlinear phenomena
such as the density cavity formation can be treated suit-
ably. The validity of the developed PM1D code is veri-
fied firstly by checking the linear growth rates for both
the SRS and SBS, which quantitatively agree with the
theoretical predictions. It is further verified by check-
ing the nonlinear development of the LPIs by comparing
them with standard PIC simulations. Just similar to PIC
codes, this PM1D code can simulate the wave breaking,

particle trapping, hot electron generation, and density
cavity formation properly, all of which are challenges to
the conventional fluid models. On the other hand, the
computational cost with this PM1D code is obviously
less than the typical PIC codes. More importantly, this
PM1D code is very robust for the simulation of the long-
time evolution of LPIs.

In the future work, we will also extend the PM1D code
to the two-dimensional geometry. To this end, the elec-
tron momentum equation in Eq. (7) should be updated
to take into account the two-plasmon decay instability.
The 2D effects such as self-focusing and filamentation can
be treated with the complete form of the ponderomotive
force, which has already been included in Eq. (7). In
the PM2D code, the laser propagation will also be de-
scribed by the 2D wave equations. To study the CBET
process, the incident laser beams with given transverse
profiles should be allowed to be incident with certain an-
gles and the scattered laser light should be absorbed on
the boundary of the simulation box. It would be a critical
issue to ensure the incident laser to be inputted and the
scattered laser to be absorbed at the boundary simulta-
neously. The boundary condition we proposed in Eq.(19)
and Eq.(20) will not be suitable for the 2D geometry at
the oblique incidence cases. The perfectly matched layers
(PML) may be an option for the boundary conditions.
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