000903416 001__ 903416
000903416 005__ 20220103172050.0
000903416 0247_ $$2doi$$a10.1063/5.0054653
000903416 0247_ $$2ISSN$$a2468-080X
000903416 0247_ $$2ISSN$$a2468-2047
000903416 0247_ $$2Handle$$a2128/29427
000903416 0247_ $$2altmetric$$aaltmetric:113914498
000903416 0247_ $$2WOS$$aWOS:000729173900001
000903416 037__ $$aFZJ-2021-05098
000903416 082__ $$a530
000903416 1001_ $$0P:(DE-HGF)0$$aMa, H. H.$$b0
000903416 245__ $$aMitigating parametric instabilities in plasmas by sunlight-like lasers
000903416 260__ $$aMelville, NY$$bAIP Publishing$$c2021
000903416 3367_ $$2DRIVER$$aarticle
000903416 3367_ $$2DataCite$$aOutput Types/Journal article
000903416 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639124585_30403
000903416 3367_ $$2BibTeX$$aARTICLE
000903416 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903416 3367_ $$00$$2EndNote$$aJournal Article
000903416 520__ $$aSunlight-like lasers that have a continuous broad frequency spectrum, random phase spectrum, and random polarization are formulated theoretically. With a sunlight-like laser beam consisting of a sequence of temporal speckles, the resonant three-wave coupling that underlies parametric instabilities in laser–plasma interactions can be greatly degraded owing to the limited duration of each speckle and the frequency shift between two adjacent speckles. The wave coupling can be further weakened by the random polarization of such beams. Numerical simulations demonstrate that the intensity threshold of stimulated Raman scattering in homogeneous plasmas can be doubled by using a sunlight-like laser beam with a relative bandwidth of ∼1% as compared with a monochromatic laser beam. Consequently, the hot-electron generation harmful to inertial confinement fusion can be effectively controlled by using sunlight-like laser drivers. Such drivers may be realized in the next generation of broadband lasers by combining two or more broadband beams with independent phase spectra or by applying polarization smoothing to a single broadband beam.
000903416 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000903416 536__ $$0G:(DE-Juel1)jzam04_20190501$$aKinetic Plasma Simulation with Highly Scalable Particle Codes (jzam04_20190501)$$cjzam04_20190501$$fKinetic Plasma Simulation with Highly Scalable Particle Codes$$x1
000903416 536__ $$0G:(EU-Grant)633053$$aEUROfusion - Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium (633053)$$c633053$$fEURATOM-Adhoc-2014-20$$x2
000903416 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903416 7001_ $$0P:(DE-Juel1)164830$$aLi, X. F.$$b1$$eCorresponding author
000903416 7001_ $$00000-0001-7746-9462$$aWeng, S. M.$$b2$$eCorresponding author
000903416 7001_ $$00000-0002-5799-9869$$aYew, S. H.$$b3
000903416 7001_ $$0P:(DE-HGF)0$$aKawata, S.$$b4
000903416 7001_ $$0P:(DE-Juel1)132115$$aGibbon, P.$$b5
000903416 7001_ $$0P:(DE-HGF)0$$aSheng, Z. M.$$b6$$eCorresponding author
000903416 7001_ $$0P:(DE-HGF)0$$aZhang, J.$$b7
000903416 773__ $$0PERI:(DE-600)2858469-7$$a10.1063/5.0054653$$gVol. 6, no. 5, p. 055902 -$$n5$$p055902 -$$tMatter and radiation at extremes$$v6$$x2468-080X$$y2021
000903416 8564_ $$uhttps://juser.fz-juelich.de/record/903416/files/5.0054653.pdf$$yOpenAccess
000903416 909CO $$ooai:juser.fz-juelich.de:903416$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000903416 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164830$$aForschungszentrum Jülich$$b1$$kFZJ
000903416 9101_ $$0I:(DE-HGF)0$$60000-0001-7746-9462$$aExternal Institute$$b2$$kExtern
000903416 9101_ $$0I:(DE-HGF)0$$60000-0002-5799-9869$$aExternal Institute$$b3$$kExtern
000903416 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000903416 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132115$$aForschungszentrum Jülich$$b5$$kFZJ
000903416 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern
000903416 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b7$$kExtern
000903416 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000903416 9141_ $$y2021
000903416 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000903416 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903416 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATTER RADIAT EXTREM : 2019$$d2021-01-30
000903416 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-30
000903416 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000903416 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-30
000903416 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000903416 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000903416 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903416 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-30
000903416 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000903416 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000903416 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000903416 920__ $$lyes
000903416 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000903416 980__ $$ajournal
000903416 980__ $$aVDB
000903416 980__ $$aUNRESTRICTED
000903416 980__ $$aI:(DE-Juel1)JSC-20090406
000903416 9801_ $$aFullTexts