001     903416
005     20220103172050.0
024 7 _ |a 10.1063/5.0054653
|2 doi
024 7 _ |a 2468-080X
|2 ISSN
024 7 _ |a 2468-2047
|2 ISSN
024 7 _ |a 2128/29427
|2 Handle
024 7 _ |a altmetric:113914498
|2 altmetric
024 7 _ |a WOS:000729173900001
|2 WOS
037 _ _ |a FZJ-2021-05098
082 _ _ |a 530
100 1 _ |a Ma, H. H.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Mitigating parametric instabilities in plasmas by sunlight-like lasers
260 _ _ |a Melville, NY
|c 2021
|b AIP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639124585_30403
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Sunlight-like lasers that have a continuous broad frequency spectrum, random phase spectrum, and random polarization are formulated theoretically. With a sunlight-like laser beam consisting of a sequence of temporal speckles, the resonant three-wave coupling that underlies parametric instabilities in laser–plasma interactions can be greatly degraded owing to the limited duration of each speckle and the frequency shift between two adjacent speckles. The wave coupling can be further weakened by the random polarization of such beams. Numerical simulations demonstrate that the intensity threshold of stimulated Raman scattering in homogeneous plasmas can be doubled by using a sunlight-like laser beam with a relative bandwidth of ∼1% as compared with a monochromatic laser beam. Consequently, the hot-electron generation harmful to inertial confinement fusion can be effectively controlled by using sunlight-like laser drivers. Such drivers may be realized in the next generation of broadband lasers by combining two or more broadband beams with independent phase spectra or by applying polarization smoothing to a single broadband beam.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Kinetic Plasma Simulation with Highly Scalable Particle Codes (jzam04_20190501)
|0 G:(DE-Juel1)jzam04_20190501
|c jzam04_20190501
|f Kinetic Plasma Simulation with Highly Scalable Particle Codes
|x 1
536 _ _ |a EUROfusion - Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium (633053)
|0 G:(EU-Grant)633053
|c 633053
|f EURATOM-Adhoc-2014-20
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Li, X. F.
|0 P:(DE-Juel1)164830
|b 1
|e Corresponding author
700 1 _ |a Weng, S. M.
|0 0000-0001-7746-9462
|b 2
|e Corresponding author
700 1 _ |a Yew, S. H.
|0 0000-0002-5799-9869
|b 3
700 1 _ |a Kawata, S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gibbon, P.
|0 P:(DE-Juel1)132115
|b 5
700 1 _ |a Sheng, Z. M.
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
700 1 _ |a Zhang, J.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1063/5.0054653
|g Vol. 6, no. 5, p. 055902 -
|0 PERI:(DE-600)2858469-7
|n 5
|p 055902 -
|t Matter and radiation at extremes
|v 6
|y 2021
|x 2468-080X
856 4 _ |u https://juser.fz-juelich.de/record/903416/files/5.0054653.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903416
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164830
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0000-0001-7746-9462
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0002-5799-9869
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132115
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MATTER RADIAT EXTREM : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21