000903461 001__ 903461
000903461 005__ 20220103172045.0
000903461 0247_ $$2doi$$a10.1063/5.0043511
000903461 0247_ $$2ISSN$$a0003-6951
000903461 0247_ $$2ISSN$$a1077-3118
000903461 0247_ $$2ISSN$$a1520-8842
000903461 0247_ $$2Handle$$a2128/29490
000903461 0247_ $$2altmetric$$aaltmetric:97489266
000903461 0247_ $$2WOS$$aWOS:000631044800001
000903461 037__ $$aFZJ-2021-05134
000903461 082__ $$a530
000903461 1001_ $$00000-0002-0721-3696$$aMoutanabbir, O.$$b0$$eCorresponding author
000903461 245__ $$aMonolithic infrared silicon photonics: The rise of (Si)GeSn semiconductors
000903461 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2021
000903461 3367_ $$2DRIVER$$aarticle
000903461 3367_ $$2DataCite$$aOutput Types/Journal article
000903461 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639656367_30906
000903461 3367_ $$2BibTeX$$aARTICLE
000903461 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903461 3367_ $$00$$2EndNote$$aJournal Article
000903461 520__ $$a(Si)GeSn semiconductors are finally coming of age after a long gestation period. The demonstration of device-quality epi-layers andquantum-engineered heterostructures has meant that tunable all-group IV Si-integrated infrared photonics is now a real possibility.Notwithstanding the recent exciting developments in (Si)GeSn materials and devices, this family of semiconductors is still facing serious limitationsthat need to be addressed to enable reliable and scalable applications. The main outstanding challenges include the difficulty to growhigh-crystalline quality layers and heterostructures at the desired content and lattice strain, preserve the material integrity during growth andthroughout device processing steps, and control doping and defect density. Other challenges are related to the lack of optimized devicedesigns and predictive theoretical models to evaluate and simulate the fundamental properties and performance of (Si)GeSn layers and heterostructures.This Perspective highlights key strategies to circumvent these hurdles and hopefully bring this material system to maturity to createfar-reaching opportunities for Si-compatible infrared photodetectors, sensors, and emitters for applications in free-space communication,infrared harvesting, biological and chemical sensing, and thermal imaging.
000903461 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000903461 536__ $$0G:(GEPRIS)299480227$$aSiGeSn Laser für die Silizium Photonik (299480227)$$c299480227$$x1
000903461 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903461 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000903461 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000903461 7001_ $$00000-0002-3919-9112$$aAssali, S.$$b1
000903461 7001_ $$00000-0002-9243-1937$$aGong, X.$$b2
000903461 7001_ $$00000-0001-5537-2985$$aO'Reilly, E.$$b3
000903461 7001_ $$00000-0002-5370-7582$$aBroderick, C. A.$$b4
000903461 7001_ $$00000-0003-3041-6384$$aMarzban, B.$$b5
000903461 7001_ $$00000-0002-2896-7243$$aWitzens, J.$$b6
000903461 7001_ $$00000-0001-9125-6850$$aDu, W.$$b7
000903461 7001_ $$0P:(DE-HGF)0$$aYu, S-Q.$$b8
000903461 7001_ $$00000-0002-2771-4199$$aChelnokov, A.$$b9
000903461 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b10
000903461 7001_ $$00000-0003-4378-205X$$aNam, D.$$b11
000903461 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/5.0043511$$gVol. 118, no. 11, p. 110502 -$$n11$$p110502 -$$tApplied physics letters$$v118$$x0003-6951$$y2021
000903461 8564_ $$uhttps://juser.fz-juelich.de/record/903461/files/2021-%20APL%20Perspective-%20the%20rise%20of%20SiGeSn%20semiconductors.pdf$$yPublished on 2021-03-19. Available in OpenAccess from 2022-03-19.
000903461 909CO $$ooai:juser.fz-juelich.de:903461$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903461 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Arkansas$$b8
000903461 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b10$$kFZJ
000903461 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000903461 9141_ $$y2021
000903461 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000903461 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000903461 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28
000903461 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000903461 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000903461 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2019$$d2021-01-28
000903461 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000903461 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000903461 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000903461 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000903461 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000903461 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-28$$wger
000903461 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000903461 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-28
000903461 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000903461 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000903461 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000903461 980__ $$ajournal
000903461 980__ $$aVDB
000903461 980__ $$aUNRESTRICTED
000903461 980__ $$aI:(DE-Juel1)PGI-9-20110106
000903461 9801_ $$aFullTexts