001     903461
005     20220103172045.0
024 7 _ |a 10.1063/5.0043511
|2 doi
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a 1520-8842
|2 ISSN
024 7 _ |a 2128/29490
|2 Handle
024 7 _ |a altmetric:97489266
|2 altmetric
024 7 _ |a WOS:000631044800001
|2 WOS
037 _ _ |a FZJ-2021-05134
082 _ _ |a 530
100 1 _ |a Moutanabbir, O.
|0 0000-0002-0721-3696
|b 0
|e Corresponding author
245 _ _ |a Monolithic infrared silicon photonics: The rise of (Si)GeSn semiconductors
260 _ _ |a Melville, NY
|c 2021
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639656367_30906
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a (Si)GeSn semiconductors are finally coming of age after a long gestation period. The demonstration of device-quality epi-layers andquantum-engineered heterostructures has meant that tunable all-group IV Si-integrated infrared photonics is now a real possibility.Notwithstanding the recent exciting developments in (Si)GeSn materials and devices, this family of semiconductors is still facing serious limitationsthat need to be addressed to enable reliable and scalable applications. The main outstanding challenges include the difficulty to growhigh-crystalline quality layers and heterostructures at the desired content and lattice strain, preserve the material integrity during growth andthroughout device processing steps, and control doping and defect density. Other challenges are related to the lack of optimized devicedesigns and predictive theoretical models to evaluate and simulate the fundamental properties and performance of (Si)GeSn layers and heterostructures.This Perspective highlights key strategies to circumvent these hurdles and hopefully bring this material system to maturity to createfar-reaching opportunities for Si-compatible infrared photodetectors, sensors, and emitters for applications in free-space communication,infrared harvesting, biological and chemical sensing, and thermal imaging.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a SiGeSn Laser für die Silizium Photonik (299480227)
|0 G:(GEPRIS)299480227
|c 299480227
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Assali, S.
|0 0000-0002-3919-9112
|b 1
700 1 _ |a Gong, X.
|0 0000-0002-9243-1937
|b 2
700 1 _ |a O'Reilly, E.
|0 0000-0001-5537-2985
|b 3
700 1 _ |a Broderick, C. A.
|0 0000-0002-5370-7582
|b 4
700 1 _ |a Marzban, B.
|0 0000-0003-3041-6384
|b 5
700 1 _ |a Witzens, J.
|0 0000-0002-2896-7243
|b 6
700 1 _ |a Du, W.
|0 0000-0001-9125-6850
|b 7
700 1 _ |a Yu, S-Q.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Chelnokov, A.
|0 0000-0002-2771-4199
|b 9
700 1 _ |a Buca, D.
|0 P:(DE-Juel1)125569
|b 10
700 1 _ |a Nam, D.
|0 0000-0003-4378-205X
|b 11
773 _ _ |a 10.1063/5.0043511
|g Vol. 118, no. 11, p. 110502 -
|0 PERI:(DE-600)1469436-0
|n 11
|p 110502 -
|t Applied physics letters
|v 118
|y 2021
|x 0003-6951
856 4 _ |u https://juser.fz-juelich.de/record/903461/files/2021-%20APL%20Perspective-%20the%20rise%20of%20SiGeSn%20semiconductors.pdf
|y Published on 2021-03-19. Available in OpenAccess from 2022-03-19.
909 C O |o oai:juser.fz-juelich.de:903461
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a University of Arkansas
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)125569
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS LETT : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21