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ABSTRACT 

It is challenging to specify the role of the default mode network (DMN) in human behaviour. Contemporary 

theories, based on functional magnetic resonance imaging (MRI), suggest that the DMN is insulated from 

the external world, which allows it to support perceptually-decoupled states and to integrate external and 

internal information in the construction of abstract meanings. To date, the neuronal architecture of the DMN 

has received relatively little attention. Understanding the cytoarchitectural composition and connectional 

layout of the DMN will provide novel insights into its role in brain function. We mapped cytoarchitectural 

variation within the DMN using a cortical type atlas and a histological model of the entire human brain. 

Next, we used MRI acquired in healthy young adults to explicate structural wiring and effective 

connectivity. We discovered profound diversity of DMN cytoarchitecture. Connectivity is organised along 

the most dominant cytoarchitectural axis. One side of the axis is the prominent receiver, whereas the other 

side remains more insulated, especially from sensory areas. The structural heterogeneity of the DMN 

engenders a network-level balance in communication with external and internal sources, which is 

distinctive, relative to other functional communities. The neuronal architecture of the DMN suggests it is a 

protuberance from the core cortical processing hierarchy and holds a unique role in information integration.  
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INTRODUCTION 

Complex behaviour benefits from parallel distributed processing in brain networks (Felleman and Van 

Essen, 1991; Goldman-Rakic and Schwartz, 1982; Mesulam, 1990; Rumelhart and McClelland, 1987, 

1986). This architecture allows for the simultaneous and varied consideration of multiple sources of 

information (Cisek, 2012; Felleman and Van Essen, 1991; Mesulam, 1990). The roles of certain networks 

are well-defined, while others remain elusive. Arguably, none are so elusive as the default mode network 

(DMN) (Buckner et al., 2008; Raichle, 2015). Initial observations were that DMN regions decrease activity 

during externally oriented tasks, thus behaving in a somewhat diametral way to sensory and attentional 

systems (Fox et al., 2005; Raichle et al., 2001; Shulman et al., 1997). Subsequently, several lines of research 

have demonstrated an active role of the DMN in self-generated cognitive operations that draw on memory 

(Li et al., 2021; McCormick et al., 2014; Sestieri et al., 2011). Examples include self-referential cognition 

(Davey et al., 2016; Molnar-Szakacs and Uddin, 2013; Spreng et al., 2010), complex decision making 

(Murphy et al., 2019, 2018), social cognition (Alcalá-López et al., 2018; Frith and Frith, 2012), and 

narrative comprehension (Mar, 2011; Simony et al., 2016). As these complex behaviours share a 

dependence on integration of information from internal as well as external sources (Brandman et al., 2021), 

contemporary theories have also postulated that balancing internal and external information may be a core 

aspect of DMN function (Buckner et al., 2008; Smallwood et al., 2021a; Yeshurun et al., 2021).   

Complementing behavioural accounts, the functional role of networks such as the DMN may be understood 

with respect to their neuronal architecture. The DMN is composed of several areas distributed across the 

frontal, parietal and temporal cortex. Histological studies show that these regions vary in their cellular 

make-up (Brodmann, 1903; Von Economo and Koskinas, 1925). Even within a circumscribed region of the 

DMN, such as the inferior parietal lobe or medial prefrontal cortex, distinct cytoarchitectural areas can exist 

(Bludau et al., 2014; Caspers et al., 2008, 2006). Thus, the DMN is cytoarchitecturally heterogenous, 

although the manner and influence of this cytoarchitectural variation is not known. One appealing candidate 

to link cytoarchitecture to function is laminar differentiation (Barbas, 2015, 1986; Barbas and Rempel-

Clower, 1997). The clarity of cortical layers as well as the prominence of a granular layer IV, also referred 

to as “granularity”, decreases with synaptic distance from primary sensory areas (Mesulam, 1998; Pandya 

and Yeterian, 1985). These cytoarchitectural changes present as a gradient running across the cortical 

surface (García-Cabezas et al., 2020; Paquola et al., 2019b), which is commonly termed the “sensory-fugal” 

axis, as it mirrors a shift in receptiveness from the external world to the internal milieu Thus, cortical types, 

which discretise the sensory-fugal gradient of laminar elaboration (García-Cabezas et al., 2020; Von 

Economo and Koskinas, 1925), can index coupling of neural responses to the external world. Further 

characterisation of DMN cytoarchitecture is possible with an ultra-high-resolution histological 

reconstruction of the human brain (Amunts et al., 2013). BigBrain, the first dataset of this kind (Amunts et 

al., 2013), allows computational analysis of cytoarchitecture across the entire human brain. It may be that 

the dominant pattern of cytoarchitectural differentiation in the DMN is the gradient of laminar elaboration, 

or an altogether distinct pattern. 

In the context of the whole cortex, the DMN occupies a distinct topographic position (Smallwood et al., 

2021a). Parts of the DMN are situated most distally from primary sensory and motor areas (Leech et al., 

2014; Margulies et al., 2016). The separation from primary sensory areas reinforces that the DMN is 

involved in functions that require integration between distinct sources, while also being relatively insulated 

from the influence of one specific input. Multi-variate decompositions of resting state fMRI support this 

notion, illustrating antipodal functional dynamics of the DMN and primary sensory areas (Hong et al., 2019; 

Margulies et al., 2016; Sepulcre et al., 2012). Based on these results, it was hypothesised that the DMN is 

the apex of the sensory-fugal hierarchy. The validity of this hypothesis may be evaluated based on physical 
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embedding of the DMN within the whole-brain connectome. However, studies mapping white matter tracts 

of the DMN have thus far focused on specific fiber bundles that interconnect its different regions (Alves et 

al., 2019; Figley et al., 2015; Greicius et al., 2009; Horn et al., 2014; Khalsa et al., 2014; Sandhu et al., 

2020; Van Den Heuvel et al., 2008; Van Oort et al., 2014). Thus, how subunits of the DMN contribute to 

both integration and perceptually-decoupled cognition remains unclear. Extant functional connectivity 

studies show regionally variable coherence of the DMN with other large-scale networks, especially 

attention networks (Anderson et al., 2011; Braga et al., 2013; Dixon et al., 2017; He et al., 2009; Uddin et 

al., 2009), which suggest complementary functions of subunits towards network-level roles. Crucially, 

dynamic models of cortical function offer enhanced sensitivity to regional differences (Dixon et al., 2017) 

and will allow inference on the directionality of information flow to and from the DMN.  

Revealing the cytoarchitectural composition and connectional layout of the DMN will provide novel 

insights into the structural basis of DMN function. To this end, we mapped cytoarchitectural variation 

within the DMN using a cortical type atlas (García-Cabezas et al., 2020; Von Economo and Koskinas, 

1925) and a histological model of the entire human brain (Amunts et al., 2013) (Figure 1). We aimed to 

determine the spatial pattern and specific histological features of cytoarchitectural differentiation within the 

DMN. Next, we used magnetic resonance imaging (MRI) acquired in healthy young adults (Royer et al., 

2021; Van Essen et al., 2013) to explicate structural wiring and effective connectivity. In both modalities, 

we examined the balance of communication from the DMN to different cortical types, where granularity of 

the cortical type proxies coupling to external sources. Then, we tested whether cytoarchitectural variations 

within the DMN account for the balance in connectivity. Finally, we evaluated whether cytoarchitectural 

heterogeneity and connectional balance were unique properties of the DMN, by comparing its features to 

other large-scale functional brain networks.  

 
Figure 1: Overview of core analyses. Left Characterising cytoarchitecture of the DMN using a priori defined cortical types 

(García-Cabezas et al., 2020; Von Economo and Koskinas, 1925) and a histological model of the entire human brain (Amunts et 

al., 2013). Complementary atlas overlap and unsupervised machine learning procedures were used to evaluate the degree and 

pattern of cytoarchitectural heterogeneity, respectively. Right The position of the DMN in the whole brain network was assessed 

structurally and functionally using navigation efficiency (Seguin et al., 2019) and directed effective connectivity (Frässle et al., 

2021b). Then, the relation of cytoarchitectural heterogeneity to connectivity were principally determined with three tests, which 

used properties of seed/target regions to explain variation in the strength of connectivity. The properties were cortical type for non-

DMN regions and data-driven cytoarchitectural axis values for DMN regions. The main effect of each were tested, as well as their 

interaction.   

 

RESULTS 

The DMN shows marked cytoarchitectural heterogeneity 

Using established maps of cytoarchitectural differentiation (García-Cabezas et al., 2020; Paquola et al., 

2019b; Von Economo and Koskinas, 1925), we found that the DMN harbours all six cortical types, 

signifying marked cytoarchitectonic heterogeneity (Figure 2B). Chi-squared tests showed that cortical 
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types were not equally represented within the DMN, however (types: χ2=1497, p<0.001). By comparing the 

proportions of cortical types in the DMN to 1000 randomly rotated versions of the atlas, which preserve the 

size and shape of the DMN (Alexander-Bloch et al., 2018), we found that the DMN significantly over-

represents eulaminate-I (18% increase; pspin=0.006) and under-represents the koniocortical type (7% 

decrease, pspin=0.011) (Supplementary Figure 1). 

 

Figure 2: Cytoarchitectural heterogeneity of the DMN. A) DMN defined by (Yeo et al., 2011). B) Histogram depicts the 

frequency of cortical types within the DMN, with + indicative of significant over-representation and – for under-representation, 

relative to a spatially rotated null model. Cortical types are shown on the surface. The schematic highlights prominent features that 

vary across cortical types, including the location/size of largest pyramidal neurons (triangles), thickness of layer IV, existence of 

sublayers in V-VI (grey dashed lines), regularity of layer I/II boundary (straightness of line). Kon=koniocortical. Eul=eulaminate. 

Dys=dysgranular. Ag=agranular. C) i. Scatterplot shows approximate variance explained of affinity matrix by each eigenvector, 

which reflects variation in cytoarchitecture. ii. Probability density plot shows a bimodal distribution of E1 values. iii. E1 projected 

onto the inflated BigBrain surface. iv. Staining intensity profiles averaged within 100 bins of E1 and coloured by E1 position show 

the shift from skewed to flat profiles along the cytoarchitectural axis. D) i. Raincloud plot shows the distribution of E1 within 
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circumscribed subregions of the DMN. Para: parahippocampus. IPL: inferior parietal lobule. MTG: middle temporal gyrus. IFG: 

inferior frontal gyrus. Prec: precuneus. PFC: prefrontal cortex. ii. The topography of E1 on the cortex shown as a 3D surface plot, 

with E1 as the z-axis. For visualisation purposes, the x- and y-axes are defined by isomap flattening of the subregion. In the analyses, 

the spatial information is determined by edge relationships on the surface mesh. iii. Scatterplot shows the number of intersections 

of the E1=0 plane for each subregion. Few intersections indicate the slope of the landscape is more unidirectional, while many 

intersections suggest a bumpier landscape.  

We mapped cytoarchitectural variability within the DMN by measuring intracortical variations in cell body 

staining from BigBrain, a high-resolution 3D reconstruction of a post mortem human brain (Amunts et al., 

2015). A total of 71,576 staining intensity profiles, oriented in the direction of cortical columns, were used 

to quantify depth-wise variations in cell density and soma size. The principle axis of variation in 

cytoarchitecture was revealed by diffusion map embedding, a nonlinear manifold learning technique 

(Coifman et al., 2005; Margulies et al., 2016; Vos de Wael et al., 2020). The first eigenvector (E1) explained 

~27% of variance and illustrated a marbled pattern of cytoarchitectural differentiation within the DMN 

(Figure 2C). The E1 pattern is distinct to the gradient of laminar elaboration that is captured by the cortical 

types. Both are anchored by koniocortex on one side and agranular cortex on the other, but they differ in 

the ordering of eulaminate and dysgranular cortex (Supplementary Figure 1). 

Each subregion of the DMN comprises a broad range of E1, which indicates intra-regional cytoarchitectural 

diversity (Figure 2Di). The spatial pattern of E1 differs between subregions, however. On the one hand, in 

the parahippocampal region, E1 values vary relatively smoothly across the surface, exhibiting a 

cytoarchitectural gradient (i.e. a graded, unidirectional change in E1 values). On the other hand, in the 

lateral prefrontal cortex, E1 transitions between extremes periodically along the surface, representing 

interdigitation of different cytoarchitectural forms. Such interdigitation is also observed in inferior frontal 

gyrus, inferior parietal lobule and the medial temporal gyrus. Between these extreme cases, cingulate-linked 

regions (i.e. medial prefrontal cortex and precuneus) exhibit gradients with striations. E1 values generally 

decrease with distance from the cingulate, but there are intermittent deviations from the gradient trend. The 

striations are not clearly aligned with curvature (spatial correlation, r=-0.08). We quantified differences in 

the spatial patterns by calculating roughness parameters (Gadelmawla et al., 2002a) of the cortical surface,  

using E1 as the texture or elevation of the cortical landscape. In terms of spatial roughness parameters, the 

number of intersections of the E1=0 plane (n0) varied most substantially across subregions (74% variation, 

see Supplementary Table 1 for all parameters). Additionally, greater variation was observed across spatial 

parameters (median variation=41%) than amplitude parameters (median variation=15%), which 

complements our qualitative assessment that subregions differ in terms of the spatial patterning of 

cytoarchitectural differentiation more than the total cytoarchitectural content.  

E1 captures changes in the intracortical staining intensity profiles, which capture depth-wise variations in 

the density and size of cell bodies. Areas with lower E1 values exhibit higher overall staining intensity, 

with a noticeable peak at mid-depths, whereas areas with higher E1 values show overall lower staining 

intensity with a flatter profile and more limited differentiation across depths (Figure 2C right). To evaluate 

these changes quantitatively, we characterised the shape of each staining intensity profile based on intensity 

at each depth as well as the central moments (mean, SD, skewness and kurtosis) (Paquola et al., 2020; 

Schleicher et al., 1999; Zilles et al., 2002). Then, we used random forest regression, an ensemble learning 

algorithm that is well-suited to feature selection (Strobl et al., 2008), to identify staining intensity profile 

features (depth-specific intensity or central moments) that explain E1. A reduced model with profile 

skewness and staining intensity at approximately 10% and 12% depth provided strong explanatory power 

of E1 (mean squared error=0.04, R2=0.80) (Supplementary Figure 2). Skewness, the most salient feature 

that changes along E1, relates to the relative staining in supra vs infragranular layers. Lower E1 values 

correspond to a high skewness, whereas higher E1 values reflect a flatter profile (skewed-flat axis). This 
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emphasises the importance of distribution of cells across multiple layers in defining cytoarchitecture 

(Paquola et al., 2020). In addition, intensity at 10/12% depth, aligns with the layer I/II border, depicting a 

more specific aspect of cytoarchitectural differentiation in the DMN.  

 

Divergence of structural connectivity along the cytoarchitectural axis 

Next, we expanded our neuroanatomical study of the DMN from the intrinsic neuronal architecture to its 

extrinsic connectivity. We constructed a group-consensus structural connectome of 400 functionally-

defined parcels (Schaefer et al., 2018) using diffusion weighted MRI tractography from 40 healthy adults 

(Figure 3Ai). Within each hemisphere, we calculated parcel-to-parcel navigation efficiency based on the 

structural connectome (Figure 3Aii). Navigation efficiency relates to distance travelled between a seed and 

a target along the structural connectome and previous work has shown navigation closely approximates 

invasive tract tracing connectomes in non-human primates (Seguin et al., 2019). Higher navigation 

efficiency indexes stronger communication with lower wiring cost. 

 
Figure 3: DMN structural connectivity organised with respect to cytoarchitecture. A) i. Navigation efficiency (Enav) was 

calculated from step-wise progression along the tractography-based connectome, where each step is determined by spatial 

proximity to the target node. . ii. Graph representation of the Enav connectome within the left hemisphere. The matched 

representations depict E1 (within DMN), functional networks, and cortical types . B) i. Type-effect: Boxplots show depict a striking 

balance in the average Enav of each DMN parcel across cortical types. ii. Axis-effect: Cortical surfaces show the average Enav of 

each DMN parcel. Scatterplot shows that DMN nodes lower on E1 have higher average Enav.iii. Interaction-effect: Bar plots shows 

the linear correlation coefficient (r) of E1 value with type-average Enav. The significant (*) negative r values indicate that DMN 

nodes lower on E1 have higher Enav to granular cortical types [koniocortex (Kon) and eulaminate (Eu) III-II] 
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We focused on extrinsic connectivity of the DMN to discern its position in the whole brain connectome. 

We examined the relationship of cytoarchitecture to regional differences in DMN circuitry by labelling 

DMN seeds by E1 and labelling non-DMN targets by cortical type. Based on a multiple linear regression 

model, the cytoarchitectural features of seeds and targets together account for approximately 19% of 

variance in extrinsic navigation efficiency of the DMN (adjusted R2=0.188, p<0.001). In post hoc analyses, 

we found navigation efficiency from the DMN to each type was relatively similar, as average navigation 

efficiency to each type did not significantly differ from null spin models (0.44< pspin<0.53, Figure 3Bi). In 

contrast, we observed a significant decrease in average navigation efficiency along E1 (r=-0.52, pspin=0.001, 

Figure 3Bii). Additionally, we observed an interaction of E1 value of DMN seeds with the cortical type of 

non-DMN targets (t512,516=7.94, p<0.001). Navigation efficiency to the most granular types decreased along 

E1 (koniocortical/eulaminate III/eulaminate II; r=-0.63/-0.55/-0.33, pspin<0.025), while navigation 

efficiency to less granular types was not significantly associated with E1 (eulaminate 

I/dysgranular/agranular; r=-0.28/0.08/0.11, pspin>0.025, Figure 3Biii). We did not observe this pattern for 

connectivity within the DMN (Supplementary Figure 3). Furthermore, the detected pattern of extrinsic 

connectivity was specific to the E1 and was not observed when defining DMN cytoarchitecture by cortical 

types or lower eigenvectors (Supplementary Figure 3). Together, this shows that structural connectivity 

of the DMN to other brain regions is organised along E1, particularly for more granular types that have 

higher navigation efficiency to DMN areas with lower E1 positions. The skewed aspect of E1 is thus 

structurally poised to integrate signals from a large cortical territory.  

 

Cytoarchitecturally-linked functional dynamics of the DMN 

The structural analyses demonstrate the potential for equipoised communication of the DMN with all 

cortical types as well as the organisation of extrinsic connectivity of the DMN according to cytoarchitectural 

differentiation. To assess directed information flow to and from the DMN, we modelled the effective 

connectivity of the whole cortex (400 nodes) using resting state fMRI and regression dynamic causal 

modelling [rDCM, (Frässle et al., 2017), Figure 4A]. rDCM is a scalable generative model of effective 

connectivity, and recent work demonstrated the ability of this approach to detect regional differences in 

afferent and efferent connectivity within and between large-scale functional networks (Frässle et al., 

2021b). 

We divided the effective connectivity matrix into an afferent component, reflecting input to the DMN from 

non-DMN areas, and an efferent component, reflecting output of the DMN to non-DMN areas. The impact 

of cytoarchitecture on connectivity strength was measured in two ways, related to the cortical type of non-

DMN areas and E1 position of DMN areas. Based on a multiple linear regression model, these 

cytoarchitectural features together account for approximately 25% of variance in afferent connectivity (adj. 

R2=0.246, p<0.001) and 5% of variance in efferent connectivity (adj. R2=0.058, p<0.001), suggesting that 

they mainly determine inflow into the DMN. We compared type-average strength to 10,000 null models 

with permuted cortical type assignments, thus gauging whether type-average strength is significantly higher 

or lower than may be expected from the size and distribution of that cortical type. Afferent connectivity 

was enhanced from eulaiminate-I (pspin<0.001), while efferent connectivity exhibited no clear preference 

for type (Figure 4B left). Next, we examined whether connectivity strength was related to the E1 values 

across the DMN. Input to the DMN was stronger towards the skewed aspect of E1 (r=-0.41, pspin<0.010), 

whereas output of the DMN was more balanced across E1 (r=0.05, pspin<0.362) (Figure 4B centre). Finally, 

we tested for an interaction between cytoarchitecture of seed and target by calculating the correlation of 

connectivity with the E1 separately for each cortical type. Afferent connectivity was consistently stronger 

at the lower anchor of E1, regardless of the cortical type of the seed (-0.45<r<-0.22, pspin<0.004), whereas 

no association to E1 was observed for type-specific efferent connectivity (-0.06<r<-0.16, 
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0.129<pspin<0.410) (Figure 4B right). The analyses show input to the DMN is focused upon the skewed 

aspect of E1, corresponding to lower E1 values, and output of the DMN is broadcast to a wide 

cytoarchitectural spectrum. 

 
Figure 4: Relation of cytoarchitecture to effective connectivity (EC) of the default mode network (DMN). A) Methodological 

overview. Resting state fMRI (rsfmri) timeseries were extracted from 400 cortical regions (Schaefer et al., 2018) and EC was 

modelled using regression dynamic causal modelling. The EC matrix was split into afferent and efferent connectivity matrices, 

relative to the DMN. Effective connectivity of non-DMN parcels were averaged by cortical type. B) Left Boxplots show type-

average effective connectivity with the DMN, where each point reflecting a DMN parcel. Centre Surface plots show the average 

effective connectivity of each DMN parcel, taken across all non-DMN parcels. This represents the y-axis in the correlation with 

parcel-wise values of the DMN cytoarchitectural axis in the scatterplot. Right Bar plots show the correlation coefficient type-

average effective connectivity with the cytoarchitectural axis. Asterisks indicate pspin<0.004, (ie: Bonferroni correction of α=0.05 

for six two-sided tests). 

 

Unique cellular and connectional architecture of the DMN 

Finally, we asked whether cytoarchitectural heterogeneity and balancing communication across cortical 

types were unique to the DMN or whether these features are present in other brain networks. While each 

functional network harbours multiple cortical types (Figure 5Ai), the distribution of types differs 
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significantly between the DMN and other functional networks, indicating a unique cytoarchitectural 

makeup of the DMN (3805>χ2>34235, p<0.001, Supplementary Table 2). We also measured 

cytoarchitectural heterogeneity based on pair-wise correlation of staining intensity profiles within each 

network, relative to a null model that represents a homogenous network. Kullback–Leibler (KL) divergence 

from the null model indicated highest cytoarchitectural heterogeneity in the DMN, closely followed by the 

ventral attention network (Figure 5Aii).  

 
Figure 5: Uniqueness of the default mode network (DMN) relative to other functional networks. A) i. Crosstabulation of functional 

network by cortical type. Frequency is provided relative to total vertices in each type. VIS=visual. SOM=somatomotor. 

DAN=dorsal attention network. VAN=ventral attention network. LIM=limbic. FP=frontoparietal. DMN=default mode network. ii. 

Matrix depicts product-moment correlation (r) of staining intensity profiles taken across the entire human brain. Distribution of r 

within each network was compared to a null model using a Kullback–Leibler (KL) divergence test; shown in the lower right bar 

plots. The null model approximated a cytoarchitecturally homogenous network (normal probability function with mean=1 and 

SD=0.01). B-C) i. Boxplots show median connectivity of each parcel to each cortical type stratified by functional network. ii. 

Imbalance of connectivity to distinct cortical types was evaluated as the KL divergence from a null model with equal Enav to each 

type. The coloured dots show the empirical values for each network and the grey density plots show the null distribution based on 

10,000 spin permutations.  
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We also stratified diffusion MRI derived navigation efficiency of each functional network with respect to 

cortical type (Figure 5Bi) and compared median navigation efficiency across cortical types to a balanced 

null model (i.e., equal median Enav across types). The DMN had the most balanced navigation efficiency 

across cortical types (Figure 5Bii, Supplementary Table 3), though the balance of the DMN was only 

marginally reduced compared to null models (pspin=0.11), which suggests that balanced navigation 

efficiency of the DMN is partly attributable to its size and spread. We repeated this analysis using efferent 

connectivity from rDCM, given the balance shown in Figure 4. Again, the DMN had the most balanced 

efferent connectivity across cortical types (Figure 5Ci, Supplementary Table 4), which was significant 

compared to spin permutations (pspin=0.043). 

Robustness analyses 

We confirmed the cytoarchitectural heterogeneity of the DMN by repeating our analyses with alternative 

atlases. The alternative atlases reflect the DMN as defined by consistency of deactivations during externally 

oriented tasks (Supplementary Figure 4) and a modified group-level atlas that uses a multi-session 

hierarchical Bayesian model to estimate individual-specific cortical networks [(Kong et al., 2019) 

Supplementary Figure 4]. In both cases, the DMN encompasses a broad range of cortical types. 

Additionally, using the Kong et al. (2019) atlas, we were able to ask whether cytoarchitectural heterogeneity 

of the DMN relate to previously described subnetworks, based on intrinsic functional connectivity. . We 

reformulated this question as a one-vs-one classification problem, using staining intensity profiles to predict 

the functional subdivisions (Supplementary Figure 5). Predictive accuracy was 42±7%, 74±3% and 

73±4% for DMN-A, DMN-B and DMN-C, respectively. Given predictive accuracy exceeds chance levels, 

we can suggest that DMN subdivisions differ in their cytoarchitectural makeup, however, they are not 

clearly separable by cytoarchitecture, and each subdivision contains variable cytoarchitecture.  

We examined the influence of subcortical structures and the hippocampus on the effective connectivity of 

the DMN in an extended rDCM (Supplementary Figure 6). Each structure was labelled as a new type and 

we repeated the analyses. While variance explained by cytoarchitectural features increased for both afferent 

(adj. R2=0.448, p<0.001) and efferent connectivity (adj. R2=0.499, p<0.001), the association of effective 

connectivity with cortical types was consistent with the original model. We observed mixed associations of 

afferent connectivity with E1 for the additional structures. Input from the caudate nucleus showed 

preference for flatter aspect of E1 (r=0.53, pspin<0.001), whereas the pallidum showed preference for the 

skewed aspect (r=-0.25, pspin=0.001). Additionally, while efferent connectivity of the DMN to the cortex 

was not clearly constrained by our definitions of cytoarchitecture, the flatter aspect of E1 exhibited stronger 

output to caudate, putamen, pallidum and nucleus accumbens (0.31<r<0.43, pspin<0.002).  

 

Replication analyses 

We repeated the imaging analyses in a separate dataset of 100 healthy young adults (HCP). These analyses 

replicated our conclusions that (i) the DMN balances navigation efficiency across cortical types, (ii) 

navigation efficiency to the most granular types decreases along E1, (iii) input from non-DMN cortex to 

the DMN is focused on the skewed aspects of E1 and (iv) output of the DMN to non-DMN cortex is not 

clearly constrained by our cytoarchitectural definitions. Additionally, the DMN was unique in these 

features, relative to other functional networks. Key statistics are presented for both datasets in 

Supplementary Tables 3-5, and replication findings are presented in Supplementary Figures 7-9. 
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DISCUSSION 

Resolving the architecture of the DMN and its unique topographic position in the cortical landscape is 

central to understanding the neural basis of complex human behaviour. Combining post mortem histology 

with in vivo imaging, we discovered profound heterogeneity in the cytoarchitecture of the DMN, which 

supports its role in integrating diverse forms of information. We found that cytoarchitectural differentiation 

in the DMN aligns with its structural wiring and extrinsic information flow. These findings suggest a novel 

wiring diagram of structural and functional connectivity of the DMN that is compatible with its putative 

role in balancing internal and external information across cortical processing streams (Buckner et al., 2008; 

Yeshurun et al., 2021). Together, our analyses illustrate how the DMN protrudes from the sensory-fugal 

axis (Mesulam, 1998), while striking a balance in communication across this hierarchy.  

Complementary theory- and data-driven analyses exposed the heterogeneous cytoarchitecture of the DMN. 

On the one hand, comparison of functional and cytoarchitectural atlases showed that the DMN harbours a 

wide range of cortical types, from eulaminate III to agranular. This type-based analysis demonstrates the 

extreme variation in cytoarchitecture of the DMN and that the DMN spans multiple steps of laminar 

elaboration (García-Cabezas et al., 2020; Von Economo and Koskinas, 1925; Von Economo and Triarhou, 

2009). On the other hand, applying non-linear dimensionality reduction techniques to an ultra-high 

resolution histological reconstruction of a human brain, BigBrain (Amunts et al. 2013), highlighted an axis 

of cytoarchitectural differentiation within the DMN that is distinct to the gradient of laminar elaboration. 

Both the type-based and data-driven axes stretch between the primary sensory areas and the allocortex, but 

they capture different aspects of cytoarchitectural similarity in eulaminate II-I and dysgranular cortex. For 

instance, cortical types in the prefrontal cortex are related to neuronal density in layers II/III (Dombrowski, 

2001), whereas the data-driven axis is related to the relative balance of staining in upper vs lower layers 

also captured by intracortical profile skewness, as well as staining near the layer I/II boundary. In addition, 

cortical types are defined by topology, that is their spatial relations, whereas the data-driven axis is agnostic 

to space, which helps to reveal neurobiological complexity that exists within cortical areas (Amunts and 

Zilles, 2015). 

The spatial pattern of cytoarchitecture differs between subregions of the DMN (Gadelmawla et al., 2002a). 

The parahippocampal region exhibits a medio-lateral cytoarchitectural gradient. This gradient resides 

within the previously described iso-to-allocortical transition of mesiotemporal lobe, which runs from the 

parahippocampal gyrus into the Cornu Ammonis subfields of the hippocampal formation (Braak and Braak, 

1985; Paquola et al., 2020). Cytoarchitectural gradients were also observed in DMN subregions that include 

the cingulate, though deviations from the gradient were evident. Increasing distance from the limbus, here 

defined in line with (Pandya et al., 2015) as the edge of the cerebral hemispheres and the diencephalon,, 

was associated with more striations in cytoarchitecture. The striations morph into patches at greater 

distances from the limbus, as seen in the lateral frontal cortex. There the data-driven axis shows high 

frequency transitions in cytoarchitecture, which aligns with tract-tracing evidence of an interdigitated 

pattern of projections in prefrontal cortex (Goldman-Rakic and Schwartz, 1982; Selemon and Goldman-

Rakic, 1988), and recent resting-state fMRI work based on extended scanning sessions that show an inter-

digitated configuration of multiple functional networks, notably DMN subnetworks (Braga and Buckner, 

2017). It has been proposed that interdigitation is a general organising principle of association circuits 

which serves to integrate disparate information (Goldman-Rakic and Schwartz, 1982). Thus, the differences 

in cytoarchitectural patterns across the cortex may be relevant to the cerebral mechanisms underlying 

information integration.  
 

A core principle of neuroanatomy holds that topographies of cortical microstructure and connectivity are 

intrinsically related (Barbas, 1986; Goulas et al., 2019; Hilgetag and Grant, 2010; Pandya et al., 2015). In 

the DMN, we find a clear example of this relationship, in that the cytoarchitectural axis captures differences 
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in structural and functional connectivity to other cortical territories. By fusing diffusion-based tractography 

with physical distance measurements into a model of navigation efficiency (Seguin et al., 2019, 2018), we 

found higher extrinsic connectivity of DMN subsections with more skewed profiles (i.e., lower E1), 

particularly to granular cortical types. Prior tract-tracing studies in macaques have focused upon 

circumscribed regions of the DMN, such as the precuneus/posterior cingulate, and have identified similar 

patterns of differential connectivity to primary sensory areas (Kobayashi and Amaral, 2003; Margulies et 

al., 2009). Our study shows the extension of this pattern across the DMN and indicates an interaction 

between the cytoarchitecture of both endpoints in determining navigation efficiency. The nature of this 

interaction suggests a novel principle of connectivity in association cortex. The efficiency of 

communication to primary sensory areas decreases along our data-driven cytoarchitectural axis, not 

according to cortical types. This somewhat contrasts with the structural model, which predicts connectivity 

based on similarity in cortical type. However, the structural model provides better explanation of long-

range than short-range connectivity (Goulas et al., 2018) and long-range connections are prominent within 

the DMN (Betzel and Bassett, 2018). Thus, our data-driven axis and the gradient of laminar elaboration 

may capture patterns of extrinsic and intrinsic DMN connectivity, respectively. 

Repeating the analysis with an rDCM of whole-brain effective connectivity, we observed decreasing 

afferent connectivity along the data-driven axis, though the effect was not constrained by the cortical type 

of the seed, as was evident with navigation efficiency. As such, we suggest that preferential navigation 

efficiency from skewed subunits of the DMN to more granular types may relate to the speed or directedness 

of communication, especially given more granular areas exhibit faster intrinsic timescales (Chaudhuri et 

al., 2015; Gao et al., 2020; Ito et al., 2020; Murray et al., 2014) and sensory areas require high fidelity 

information (Mesulam, 1998). In contrast, parcels of the DMN with flatter profiles (i.e. higher E1) are more 

insulated from primary sensory areas [also evident in (Margulies et al., 2016)] and receive less input from 

non-DMN cortex. This suggests that the characterisation of the DMN as distant from input (Murphy et al., 

2018) is especially true for those insulated subsections of the DMN. The degree of insulation may be 

concordant with suppression during externally-oriented tasks, which is also regionally variable within the 

DMN (Ossandón et al., 2011). In line with our results, flatter subunits of the DMN, such as the medial 

prefrontal cortex, are suppressed for longer than those with more skewed profiles, such as the 

temporoparietal junction. Those insulated subunits of the DMN may play a more direct role in basal ganglia-

thalamic feedback loops (Shine, 2021). We found that flatter DMN subunits had stronger output to the basal 

ganglia, which complements existing evidence on the predominance of cortico-striatal projections from the 

frontal cortex (Alexander et al., 1986; McFarland and Haber, 2000), as well as the patchiness of such 

projection sites (Lehéricy et al., 2004; Selemon and Goldman-Rakic, 1985). The connectivity analyses 

together illustrate the complementary functional roles of cytoarchitecturally distinct subunits of the DMN, 

from receivers on one-side of the cytoarchitectural axis to insulated, striatal projectors on the other side.  

The combination of post mortem microscopy and in vivo imaging depends upon precise mapping between 

atlases. The present work leveraged a specialised multi-modal surface matching procedure (Lewis et al., 

2020; Paquola et al., 2021), which minimises the misregistration error of landmarks to approximately 4mm, 

on par with standard in vivo registrations. The issue of precise mapping of functional networks to the 

BigBrain is further complicated by subject-specificity of functional network topographies (Braga and 

Buckner, 2017; Kong et al., 2019; Seitzman et al., 2019) and the impossibility of defining subject-specific 

functional networks on BigBrain. Nevertheless, our cytoarchitectural conclusions were supported when 

using a more conservative definition of the DMN, which was based on the consistency of DMN across 

individuals. The singular nature of BigBrain currently prohibits replication of the data-driven 

cytoarchitectural investigation and the examination of individual differences. Research on multiple post 

mortem brains, where every 15-20th slice was processed, showed that the bauplan of cytoarchitectural areas 
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is consistent across individuals, but the topography of areas differ (Amunts et al., 2020, 1999; Bludau et 

al., 2014). Further work on the individual variability of more detailed cytoarchitectural patterns is 

warranted. Here, we used parcel-based analysis of structural and functional connectivity, in order to focus 

on larger-scale patterns of cytoarchitecture that are more likely conserved across individuals.  

Extant theories place the DMN as the apex of the sensory-fugal hierarchy (Margulies et al., 2016) or as a  

parallel network (Buckner and Krienen, 2013). Certain features of these theories are concordant with our 

results, such as (parts of) the DMN being insulated from input and the distinctiveness of information 

processing in the DMN. However, our analyses demonstrate that connectivity is organised along the most 

prominent cytoarchitectural axis of the DMN, which is not nested within or parallel to the sensory-fugal 

hierarchy. Instead, the DMN seems to protrude from the sensory-fugal hierarchy, with strong afferent 

connectivity on one end and insulation on the other. This architecture aligns with a rich club organisation 

of brain connectivity (van den Heuvel and Sporns, 2011), in which activation of a single rich club node 

through feeder connections can ignite meta-stable network dynamics (Gollo et al., 2015; Hong et al., 2019; 

Sepulcre et al., 2012). The areas with convergent afferents, as well as connections within the DMN, may 

enable recombinations that would not occur within sensory-fugal processing streams (Felleman and Van 

Essen, 1991). Such topological complexity is thought to be an important trade-off in development and 

evolution of biological neural networks (Bassett et al., 2010) and illustrates a distinctive role of the DMN 

in information integration.   

This network-level conceptualisation has implications for how we think about the subdivisions of the DMN. 

Individualised assessments depict three domain specialised networks within the presently studied DMN 

map (Braga et al., 2020). The boundaries of these subnetworks do not likely conform to distinct 

cytoarchitectural types, as is also shown in our supplementary analysis on the group-level subdivisions 

(Andrews-Hanna et al., 2010; Yeo et al., 2011). Instead, we speculate that each domain specialised network 

comprises a diversity of cytoarchitecture and positions that support communication across the sensory-fugal 

hierarchy. The present work demonstrates how characterising the neuronal architecture of functional 

networks can enhance our understanding of network roles in complex behaviour.  
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METHODS 

Histological data 

An ultra-high resolution Merker stained 3D volumetric histological reconstruction of a post mortem human 

brain from a 65-year-old male was obtained from the open-access BigBrain repository on September 1, 

2020 [https://bigbrain.loris.ca/main.php;  (Amunts et al., 2013)]. The post mortem brain was paraffin-

embedded, coronally sliced into 7,400 20μm sections, silver-stained for cell bodies (Merker, 1983) and 

digitised. Manual inspection for artefacts (i.e., rips, tears, shears, and stain crystallisation) was followed by 

automatic repair procedures, involving non-linear alignment to a post mortem MRI, intensity normalisation, 

and block averaging (Lepage et al., 2010). The 3D reconstruction was implemented with a successive 

coarse-to-fine hierarchical procedure (Mohlberg et al., 2016). We downloaded the 3D volume at 100μm 

resolution, which was the highest resolution available for the whole brain. Computations were performed 

on inverted images, where staining intensity reflects greater cellular density and soma size. Geometric 

meshes approximating the outer and inner cortical interface (i.e., the GM/CSF boundary and the GM/WM 

boundary) with 163,842 matched vertices per hemisphere were also obtained (Lewis et al., 2014). 

We constructed 50 equivolumetric surfaces between the outer and inner cortical surfaces (Wagstyl et al., 

2018b). The equivolumetric model compensates for cortical folding by varying the Euclidean distance, ρ, 

between pairs of intracortical surfaces throughout the cortex to preserve the fractional volume between 

surfaces (Waehnert et al., 2014). ρ was calculated as follows for each surface 

𝜌 =
1

𝐴𝑜𝑢𝑡− 𝐴𝑖𝑛
 ∙ ( −𝐴𝑖𝑛 +  √𝛼𝐴𝑜𝑢𝑡

2 + (1 −  𝛼)𝐴𝑖𝑛
2  ) (1) 

where α represents fraction of the total volume of the segment accounted for by the surface, while Aout and 

Ain represent the surface area of the outer and inner cortical surfaces, respectively. Vertex-wise staining 

intensity profiles were generated by sampling cell-staining intensities along linked vertices from the outer 

to the inner surface across the whole cortex. Smoothing was employed in tangential and axial directions to 

ameliorate the effects of artefacts, blood vessels, and individual neuronal arrangement (Wagstyl et al., 

2018a). Smoothing across depths was enacted for each staining profile independently, using an iterative 

piece-wise linear procedure that minimises shrinkage [3 iterations, (Taubin, 1995)]. Additionally, surface-

wise smoothing was performed at each depth independently and involved moving a 2-vertex FWHM 

Gaussian kernel across the surface mesh using SurfStat . The staining intensity profiles are made available 

in the BigBrainWarp toolbox [(https://github.com/caseypaquola/BigBrainWarp), (Paquola et al., 2021)]. 

 

MRI acquisition – Primary analyses 

Primary MRI analyses were conducted on 40 healthy adults from the microstructure informed connectomics 

(MICs) cohort (14 females, mean±SD age=30.4±6.7, 2 left-handed) (Royer et al., 2021). Scans were 

completed at the Brain Imaging Centre of the Montreal Neurological Institute and Hospital on a 3T Siemens 

Magnetom Prisma-Fit equipped with a 64-channel head coil. Two T1w scans with identical parameters 

were acquired with a 3D-MPRAGE sequence (0.8mm isotropic voxels, matrix=320×320, 224 sagittal 

slices, TR=2300ms, TE=3.14ms, TI=900ms, flip angle=9°, iPAT=2, partial Fourier=6/8). Both T1w scans 

were visually inspected to ensure minimal head motion before they were submitted to further processing. 

A spin-echo echo-planar imaging sequence with multi-band acceleration was used to obtain DWI data, 

consisting of three shells with b-values 300, 700, and 2000s/mm2 and 10, 40, and 90 diffusion weighting 

directions per shell, respectively (TR=3500ms, TE=64.40ms, 1.6mm isotropic voxels, flip angle=90°, 
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refocusing flip angle=180°, FOV=224×224 mm2, slice thickness=1.6mm, multiband factor=3, echo 

spacing=0.76ms, number of b0 images=3). One 7 min rs-fMRI scan was acquired using multiband 

accelerated 2D-BOLD echo-planar imaging (TR=600ms, TE=30ms, 3mm isotropic voxels, flip angle=52°, 

FOV=240×240mm2, slice thickness=3mm, mb factor=6, echo spacing=0.54ms). Participants were 

instructed to keep their eyes open, look at a fixation cross, and not fall asleep. Two spin-echo images with 

reverse phase encoding were also acquired for distortion correction of the rs-fMRI scans (phase 

encoding=AP/PA, 3mm isotropic voxels, FOV=240×240mm2, slice thickness=3mm, TR=4029 ms, 

TE=48ms, flip angle=90°, echo spacing=0.54 ms, bandwidth= 2084 Hz/Px). 

 

Each T1w scan was deobliqued and reoriented. Both scans were then linearly co-registered and averaged, 

automatically corrected for intensity nonuniformity (Tustison et al., 2010), and intensity normalized. 

Resulting images were skull-stripped, and non-isocortical structures were segmented using FSL FIRST 

(Jenkinson et al., 2012). Different tissue types (cortical and subcortical grey matter, white matter, 

cerebrospinal fluid) were segmented to perform anatomically constrained tractography (Smith et al., 2012). 

Cortical surface segmentations were generated from native T1w scans using FreeSurfer 6.0 (Dale et al., 

1999; Fischl et al., 1999b, 1999a).  

 

DWI data were pre-processed using MRtrix (Tournier et al., 2019, 2012). DWI data underwent b0 intensity 

normalization, and were corrected for susceptibility distortion, head motion, and eddy currents. Required 

anatomical features for tractography processing (e.g., tissue type segmentations, parcellations) were non-

linearly co-registered to native DWI space using the deformable SyN approach implemented  in Advanced 

Neuroimaging Tools (ANTs) (Avants et al., 2008; Tustison and Avants, 2013). Diffusion processing and 

tractography were performed in native DWI space. We performed anatomically-constrained tractography 

using tissue types segmented from each participant’s pre-processed T1w images registered to native DWI 

space (Smith et al., 2012). We estimated multi-shell and multi-tissue response functions (Christiaens et al., 

2015) and performed constrained spherical-deconvolution and intensity normalization (Jeurissen et al., 

2014). We initiated the tractogram with 40 million streamlines (maximum tract length=250; fractional 

anisotropy cutoff=0.06). We applied spherical deconvolution informed filtering of tractograms (SIFT2) to 

reconstruct whole brain streamlines weighted by cross-sectional multipliers (Smith et al., 2015). The 

reconstructed cross-section streamlines were averaged within 400 spatially contiguous, functionally defined 

parcels (Schaefer et al., 2018), also warped to DWI space.  

 

rs-fMRI images were pre-processed using AFNI (Cox, 1996) and FSL (Jenkinson et al., 2012). The first 

five volumes were discarded to ensure magnetic field saturation. Images were reoriented, and motion as 

well as distortion corrected. Nuisance variable signal was removed using an ICA-FIX classifier (Salimi-

Khorshidi et al., 2014) and by performing spike regression. Native timeseries were mapped to individual 

surface models using a boundary-based registration (Greve and Fischl, 2009) and smoothed using a 

Gaussian kernel (FWHM=10mm, smoothing performed on native midsurface mesh) using workbench 

(Glasser et al., 2013). For isocortical regions, timeseries were sampled on native surfaces and averaged 

within 400 spatially contiguous, functionally defined parcels (Schaefer et al., 2018). For non-isocortical 

regions, timeseries were averaged within native parcels of the nucleus accumbens, amygdala, caudate 

nucleus, hippocampus, pallidum, putamen, and thalamus (Jenkinson et al., 2012). 
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MRI acquisition – Replication analyses 

Replication MRI analyses were conducted in 100 unrelated healthy adults (66 females, mean±SD 

age=28.8±3.8 years) from the minimally preprocessed S900 release of the Human Connectome Project 

(HCP) (Glasser et al., 2013). MRI data were acquired on the HCP’s custom 3T Siemens Skyra equipped 

with a 32-channel head coil. Two T1w images with identical parameters were acquired using a 3D-

MPRAGE sequence (0.7mm isotropic voxels, matrix=320×320, 256 sagittal slices; TR=2400ms, 

TE=2.14ms, TI=1000ms, flip angle=8°; iPAT=2). Two T2w images were acquired using a 3D T2-SPACE 

sequence with identical geometry (TR=3200ms, TE=565ms, variable flip angle, iPAT=2). A spin-echo EPI 

sequence was used to obtain diffusion weighted images, consisting of three shells with b-values 1000, 2000, 

and 3000s/mm2 and up to 90 diffusion weighting directions per shell (TR=5520ms, TE=89.5ms, flip 

angle=78°, refocusing flip angle=160°, FOV=210×180, matrix=178×144, slice thickness=1.25mm, mb 

factor=3, echo spacing=0.78ms). Four rs-fMRI scans were acquired using multi-band accelerated 2D-

BOLD echo-planar imaging (2mm isotropic voxels, matrix=104×90, 72 sagittal slices, TR=720ms, 

TE=33ms, flip angle=52°, mb factor=8, 1200 volumes/scan, 3456 seconds). Only the first session was 

investigated in the present study. Participants were instructed to keep their eyes open, look at a fixation 

cross, and not fall asleep. Nevertheless, some subjects were drowsy and may have fallen asleep (Glasser et 

al., 2018), and the group-averages investigated in the present study do not address these inter-individual 

differences. MRI data underwent HCP’s minimal preprocessing (Glasser et al., 2013). Cortical surface 

models were constructed using Freesurfer 5.3-HCP (Dale et al., 1999; Fischl et al., 1999a, 1999b), with 

minor modifications to incorporate both T1w and T2w (Glasser and Van Essen, 2011).  

 

Diffusion MRI data underwent correction for geometric distortions and head motion (Glasser et al., 2013). 

Tractographic analysis was based on MRtrix3 (https://www.mrtrix.org). Response functions for each tissue 

type were estimated using the dhollander algorithm (Dhollander et al., 2016). Fibre orientation distributions 

(i.e., the apparent density of fibres as a function of orientation) were modelled from the diffusion-weighted 

MRI with multi-shell multi-tissue spherical deconvolution (Jeurissen et al., 2014), then values were 

normalised in the log domain to optimise the sum of all tissue compartments towards 1, under constraints 

of spatial smoothness. Anatomically constrained tractography was performed systematically by generating 

streamlines using second order integration over fibre orientation distributions with dynamic seeding (Smith 

et al., 2015; Tournier et al., 2007). Streamline generation was aborted when 40 million streamlines had 

been accepted. Using a spherical-deconvolution informed filtering of tractograms (SIFT2) approach, 

interregional tract strength (TS) was taken as the streamline count weighted by the estimated cross section 

(Smith et al., 2015). The reconstructed cross-section streamlines were averaged within 400 spatially 

contiguous, functionally defined parcels (Schaefer et al., 2018), also warped to DWI space.  

 

BOLD timeseries were corrected for gradient nonlinearity, head motion, bias field and scanner drifts, then 

structured noise components were removed using ICA-FIX, further reducing the influence of motion, non-

neuronal physiology, scanner artefacts and other nuisance sources (Salimi-Khorshidi et al., 2014). The rs-

fMRI data were resampled from volume to MSMAll functionally aligned surface space (Robinson et al., 

2018, 2014) and averaged within 400 spatially contiguous, functionally defined parcels (Schaefer et al., 

2018). 
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Comparison of cortical maps 

Functional networks were defined using the widely used Yeo et al., (2011) atlas. The atlas reflects clustering 

of cortical vertices according to similarity in resting state functional connectivity profiles, acquired in 1000 

healthy young adults. Cortical types were assigned to Von Economo areas (Scholtens et al., 2016; Von 

Economo and Koskinas, 1925), based on a recent re-analysis of Von Economo micrographs (García-

Cabezas et al., 2020). Several features were used to identify the type, including “development of layer IV, 

prominence (denser cellularity and larger neurons) of deep (V–VI) or superficial (II–III) layers, definition 

of sublayers (e.g., IIIa and IIIb), sharpness of boundaries between layers, and presence of large pyramids 

in superficial layers” (García-Cabezas et al., 2020). Cortical types synopsise degree of granularity, from 

high laminar elaboration in koniocortical areas, six identifiable layers in eulaminate III-I, poorly 

differentiated layers in dysgranular and absent layers in agranular.  

The proportion of DMN vertices assigned to each cortical type was calculated on a common surface 

template, fsaverage5 (Dale et al., 1999). Throughout the statistical analyses, we employ a spin permutation 

framework to compute p-values and evaluate significance. This procedure involved generating a null 

distribution by rotating one brain map 10,000 times and recomputing the outcome of interest. Then, we 

calculate 𝑝𝑠𝑝𝑖𝑛 = 1 −  
Σ (𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙>𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠)

𝑡𝑜𝑡𝑎𝑙 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠
  and/or 𝑝𝑠𝑝𝑖𝑛 = 1 −  

Σ (𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙<𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠)

𝑡𝑜𝑡𝑎𝑙 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠
 

(Alexander-Bloch et al., 2018; Vos de Wael et al., 2020). Crucially, the null distribution preserves the 

spatial structure of both brain maps, which establishes the plausibility of a random alignment of the maps 

explaining their correspondence. Generally, we deemed significance p<0.05 for one-tailed tests and 

p<0.025 for two-tailed tests. Additionally, we used Bonferroni correction when multiple univariate 

comparisons were made using the same response variable.  

Data-driven cytoarchitectural axis within the DMN 

The functional network atlases were transformed to the BigBrain surface using a specially optimised multi-

modal surface matching algorithm (Lewis et al., 2020). The pattern of cytoarchitectural heterogeneity in 

the DMN was revealed using non-linear manifold learning. The approach involved calculating pair-wise 

product-moment correlations of BigBrain staining intensity profiles, controlling for the average DMN 

staining intensity profile. Negative values were zeroed to emphasise the non-shared similarities. Diffusion 

map embedding of the correlation matrix was employed to gain a low dimensional representation of 

cytoarchitectural patterns (Coifman and Lafon, 2006; Margulies et al., 2016). Diffusion map embedding 

belongs to the family of graph Laplacians, which involve constructing a reversible Markov chain on an 

affinity matrix. Compared to other nonlinear manifold learning techniques, the algorithm is relatively robust 

to noise and computationally inexpensive (Tenenbaum et al., 2000; Von Luxburg, 2007). A single 

parameter α controls the influence of the sampling density on the manifold (α = 0, maximal influence; α = 

1, no influence). As in previous studies (Margulies et al., 2016; Vos de Wael et al., 2018), we set α = 0.5, a 

choice retaining the global relations between data points in the embedded space. Notably, different alpha 

parameters had little to no impact on the first two eigenvectors (spatial correlation of eigenvectors, r>0.99).  

The DMN comprises 71,576 vertices on the BigBrain surface, each associated with approximately 1mm2 

of surface area. Pair-wise correlation and manifold learning on 71,576 data points was computationally 

infeasible, however. Thus, we performed a 6-fold mesh decimation on the BigBrain surface to select a 

subset of vertices that preserve the overall shape of the mesh (The MathWorks, 2019). Then, we assigned 

each non-selected vertex to the nearest maintained vertex, determined by shortest path on the mesh (ties 

were solved by shortest Euclidean distance). Staining intensity profiles were averaged within each surface 
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patch of the DMN, then the dimensionality reduction procedure was employed. Subsequent analyses 

focused on the first eigenvector (E1), which explained the most variance in the affinity matrix.  

Local variations in E1 were examined within spatially contiguous regions of the DMN, which were defined 

using SurfStat (Worsley et al., 2009). Quantitative description of E1 heterogeneity within each subregion 

was achieved by adopting an approach from microscopic materials physics for characterising the roughness 

of a surface (Gadelmawla et al., 2002b). Research in landscape ecology demonstrates the benefits of using 

roughness parameters on larger-scale domains, especially where features vary continuously (McGarigal et 

al., 2009). Given the continuity of neurobiological attributes (Fukuchi-Shimogori and Grove, 2001; Fulcher 

et al., 2019), roughness parameters are well suited to characterise subregion patterns of E1. Roughness 

parameters may be categorised as amplitude, spatial or hybrid measures. Amplitude parameters relate to 

the vertical characteristics of the surface deviations, spatial to the horizontal characteristics and hybrid to 

the combination. In the present work, the surface mesh was used to define neighbourhoods and spatial 

relations. A subset of parameters from Gadelmawla et al. (2002b) were adopted (the full list is provided in 

Supplementary Table 1). Certain parameters were excluded if requirements for the equation could not 

assumed [i.e., more than 3 peaks or troughs within a region (Rz, Rti, Rtm, Ry, R3y, R3z)], the equation requires 

a priori segmentation of the surface (lo), the equation requires an a priori threshold level (high spot count, 

Hu, Hs, Pu, Ptp) or the equation could not be directly translated from 2D to 3D (power spectral density, 

autocorrelation function, amplitude density function, number of inflection points). In total, the present work 

includes 9 amplitude, 5 spatial and 7 hybrid parameters. Following calculation of the roughness parameters, 

the coefficient of variation was calculated across subregions to determine which parameters distinguish 

subregions.  

The relation of E1 to staining intensity profiles was visually inspected by discretising E1 into 100 bins, 

averaging profiles within bins and plotting the profiles with colours matched to bin-average E1. Specific 

cytoarchitectural features that vary across E1 were identified from a set of 54 [50 depth-wise intensities and 

4 central moments (Paquola et al., 2019a)]. The features were z-standardised and 70% of observations were 

used to train a random forest regression. Training involved a grid search for optimal hyperparameters 

(maximum depth and number of estimators) and feature selection. Feature importance was estimated as the 

mean decrease in model accuracy with feature weightings shuffled and features with above average 

importance were selected. Note, feature importance values must be taken in the context of the model, and 

they represent the relative variance explained within the model. Both training procedures used five-fold 

cross validation and mean squared error as a measure of model accuracy. The accuracy (mean squared 

error) and explanatory power (R2) of the selected model were evaluated on the remaining 30% of 

observations (test set). 

 

Structural connectivity of the DMN 

Extrinsic connectivity of DMN subunits was mapped using structural connectomes, derived from diffusion-

based tractography. Edge weights of the structural connectomes, representing number of streamlines, were 

remapped to edge lengths using a log-based transformation: L = −log10(W/(max(W) + min(W>0)). This 

log-based transformation attenuates extreme weights and ensures the maximum edge weight is mapped to 

a positive value. Euclidean distance was calculated between the centroid coordinate of each parcel. 

Communication in the structural connectome was modelled using navigation (Seguin et al., 2018), also 

known as greedy routing (Muscoloni et al., 2017). Navigation combines the structural connectome with 

physical distances, providing a routing strategy that recapitulates invasive, tract-tracing measures of 

communication (Seguin et al., 2019). In brief, navigation involves step-wise progression from node i to 

node j, where each step is determined by spatial proximity to j. Navigation is the sum distances of the 
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selected path and navigation efficiency (Enav) its inverse; providing an intuitive metric of communication 

efficiency between two regions. Navigation efficiency was calculated within each hemisphere separately. 

Each parcel was labelled according to functional network, modal cortical type and, if part of the DMN, 

average E1 value. Parcel-average E1 values were calculated by transforming the parcellation scheme to the 

BigBrain surface and averaging within parcel (Lewis et al., 2020). We selected DMN rows and non-DMN 

columns of the Enav matrix and stratified the non-DMN columns by cortical type. First, we compared type-

specific Enav against spin permutations of the cortical type atlas to test for hyper- or hypo-navigation 

between the DMN and any specific type. Then, for each cortical type, we calculated row-wise median of 

Enav, concatenated the hemispheres and evaluated the product-moment correlation of row-wise median Enav 

with E1. The two-tailed spin permutations p-value was corrected for six comparisons, meaning we deemed 

significance where p<0.004. The analysis indicates whether communication efficiency of the DMN to a 

specific cortical type varies along the data-driven cytoarchitectural axis. We also repeated the analysis with 

DMN × whole cortex matrix and a DMN × DMN matrix to test whether the cytoarchitectural variations 

played a similar role for extrinsic and intrinsic communication of the DMN. 

 

Effective connectivity of the DMN 

The position of the DMN in large-scale cortical dynamics was explored with regression dynamic causal 

modelling [rDCM;(Frässle et al., 2017)], freely available as part of the TAPAS software package (Frässle 

et al., 2021a), a highly scalable generative model of effective connectivity that allows inferences on the 

directionality of signal flow. Input to and output of the DMN were evaluated separately in the following 

analyses. First, we estimated the variance explained in DMN effective connectivity by cortical types and 

the data-driven cytoarchitectural axis. To do so, we calculated the type-specific effective connectivity for 

each parcel of the DMN, that is the average effective connectivity to non-DMN parcels of a certain cortical 

type. Then, we fit a multiple linear regression model with type-specific effective connectivity as the 

response variable, cortical type as a categorical predictor and E1 as a continuous predictor. We conducted 

post-hoc analyses using spin permutations to determine the specific influences of cortical type and E1. 

Specifically, we compared (i) type-specific effectivity connectivity of the entire DMN against spin 

permutations of the cortical type atlas, (ii) correlation of E1 with average non-DMN effective connectivity 

against spin permutations of E1, and (iii) correlation of E1 with type-specific effective connectivity of the 

entire DMN against spin permutations of E1. These tests represent the cortical type effect, E1 effect and 

their interaction, respectively. 

The rDCM was re-generated with additional non-isocortical regions, specifically the nucleus accumbens, 

amygdala, caudate nucleus, hippocampus, pallidum, putamen, and thalamus. The above analyses were 

repeated for the isocortex to assess robustness of the model. Additionally, correlation of E1 with effective 

connectivity was calculated and compared against spin permutations of E1 for each non-isocortical region. 

The correlation values were visualised on non-isocortical regions using the ENIGMA toolbox (Paquola et 

al., 2021).  

 

Robustness to atlas definition 

The robustness of cytoarchitectural heterogeneity to the DMN definition was assessed with two alternative 

atlases. Given the origins of the DMN as a “task-negative” set of regions (Raichle et al., 2001; Shulman et 

al., 1997), the first alternative atlas involved identifying regions that are consistently deactivated during 

externally-oriented tasks. In line with a recent review (Smallwood et al., 2021b), we used pre-defined 

contrast maps from 787 healthy young adults of the Human Connectome Project 
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(“HCP_S900_GroupAvg_v1 Dataset”). Each map represents the contrast between BOLD response during 

a task and at baseline. Fifteen tasks were selected [Working Memory (WM) – 2 Back, WM-0 Back, WM-

BODY, WM-FACE, WM-PLACE, WM-TOOL, GAMBLING-PUNISH, GAMBLING-REWARD, 

MOTOR-AVG, SOCIAL-RANDOM, SOCIAL - Theory of Mind (TOM), RELATIONAL-MATCH, 

RELATIONAL-REL, EMOTION-FACES, EMOTION-SHAPES] to correspond to initial studies of the 

DMN (Raichle et al., 2001). Task-related deactivation was defined at each vertex and for each contrast as 

z-score≤-5, which is consistent with contemporary statistical thresholds used in neuroimaging to reduce 

false positives (Eklund et al., 2016). A probabilistic atlas of the DMN was calculated as the percentage of 

contrasts with task-related deactivation. The second alternative atlas represents the probability of the DMN 

at each vertex, calculated across 1029 individual-specific functional network delineations (Kong et al., 

2019). For each alternative atlas, we calculated the proportions of cortical types across a range of 

probabilistic thresholds (5-95%, at 5% increments) to determine whether the discovered cytoarchitectural 

heterogeneity of the DMN was robust to atlas definition.  

Discrimination of functional sub-networks by cytoarchitectural eigenvectors was formulated as a 

classification problem. DMN vertices were reassigned to the one of three subnetworks based on a 

previously published atlas (Yeo et al., 2011). Four folds of equal size and equal sub-network proportions 

were collated, meaning the number of vertices from each sub-network in each fold was capped based on 

the size of the smallest network. Vertex-wise values of the top 10 cytoarchitectural eigenvectors were used 

to predict functional sub-network with a one-vs-one linear support vector classifier (Pedregosa et al., 2011). 

Within each fold, 70% of vertices were used for training and 30% for testing. The contribution of each 

eigenvector was estimated by comparing the full model accuracy to leave-one-eigenvector-out model 

accuracy.   

 

Uniqueness of the DMN relative to other functional networks 

To determine the unique features of the DMN, relative to other functional networks, we compared cortical 

type assignments, cytoarchitectural heterogeneity and connectivity with cortical types to other canonical 

intrinsic functional networks (i.e., visual, somatomotor, dorsal attention, ventral attention, limbic and 

frontoparietal) (Yeo et al., 2011). Chi-squared tests measured the inequality of the functional network 

membership within each cortical type. Cytoarchitectural heterogeneity was further evaluated by calculating 

product-moment correlation of staining intensity profiles within each network. The Kullback–Leibler 

divergence of the empirical distribution of correlation values was calculated relative to a null model that 

represented a homogenous network. The homogenous network was modelled as a normal distribution with 

mean 1 and standard deviation 0.01, sampled from 0.9 to 1 in 0.01 increments. Finally, given the lack of 

type-preference in Enav and efferent connectivity of the DMN, we estimated the imbalance in Enav and 

efferent connectivity across cortical types for each functional network. Imbalanced was calculated as the 

Kullback–Leibler divergence from a null model with equal median connectivity to each type and compared 

to spin permutations of the functional network atlas.  
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Supplementary Material 

 

Supplementary Figure 1: A) First five eigenvectors projected on the inflated BigBrain surface. For line plots on the right, staining 

intensity profiles averaged within 100 bins of the respective eigenvector and coloured by eigenvector position. B) i. E1 projected 

onto inflated fsaverage surface. ii. Raincloud plot shows the distribution of E1 across cortical types. iii. Cortical type assignment 

(1:6) was rescaled to the range of E1 (-0.71:0.71) then subtracted from E1, producing a deviation map that highlights where the 

type-based and data-driven depictions of DMN cytoarchitecture differ. Negative values indicate lower E1 than expected by a linear 

relationship with cortical type, whereas positive values indicate higher E1.   
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Supplementary Figure 2: Selected staining intensity profile features. Top: Scatterplot shows correlation of standardised 

feature values with position on eigenvector 1. Line plots show average staining intensity profiles for 100 bins, stratified by the 

respective feature value, which illustrate how features capture differences in the profile shape. Profiles are coloured by 

standardised feature value. Higher Merker-staining intensity values reflect higher cellular density/soma size. Lower: Feature 

values projected onto the cortical surface.  

 

 

Supplementary Figure 3: Influence of cytoarchitecture on navigation efficiency. Bar plots show the linear correlation coefficient 

(r) of type-average Enav with a cytoarchitectural feature. Each column represents a different cytoarchitectural feature of the DMN. 

E1-5 are the first five eigenvectors (Supplementary Figure 1). The final column, “Difference in type”, is the difference between 

the DMN seed and target. Type-average Enav is calculated as the average Enav to A) non-DMN, B) all, or C) DMN parcels of a 

certain type. 
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Supplementary Figure 4: Cytoarchitectural heterogeneity of the DMN with alternative atlases. A) DMN based on consistency 

of deactivation during externally-oriented tasks. Vertex-wise change in the BOLD response were calculated across 787 subjects in 

Human Connectome Project during fifteen externally-oriented tasks. Surface projections show the consistency of deactivations 

(z≤-5) across the tasks. B) Proportion of the DMN assigned to each cortical type, where the DMN is defined variably based on  

different consistency thresholds of the map in (A). C) Probability of the DMN at each vertex, calculated across 1029 individual-

specific functional network delineations (Kong et al., 2019). B) Proportion of the DMN assigned to each cortical type, where the 

DMN is defined variably based on  different consistency thresholds of the map in (C). 

 

 

Supplementary Figure 5: A) Three subdivisions of the DMN (Yeo et al., 2011). B) Outcome of linear vector classification 

across four folds. Subdivision membership was predicted by the first ten eigenvectors that resulted from diffusion map 

embedding on microstructure profile covariance within the DMN. C) Full model predictive accuracy was compared shuffle-one-

feature models. The scatter plot shows decrease in accuracy with each feature for each subdivision. Vertical bars indicate 

standard deviation in decrease in accuracy across folds.  
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Supplementary Figure 6: Expanded rDCM with non-isocortical regions. Left Boxplots show type-average effective connectivity 

with the DMN, where each point reflecting a DMN parcel. Centre left Surface plots show the average effective connectivity of 

each DMN parcel, taken across all non-DMN isocortical parcels. This represents the y-axis in the correlation with parcel-wise 

values of eigenvector 1 (E1, ie: data-driven cytoarchitectural axis) in the scatterplot. Centre right Bar plots show the correlation 

coefficient type- or region-average effective connectivity with the cytoarchitectural axis. Asterisks indicate pspin<0.002 (ie: 

Bonferroni correction of α=0.05 for thirteen two-sided tests). Far right Surface plots show the correlation coefficient of effective 

connectivity with the cytoarchitectural axis for non-isocortical regions. 

 

 

Supplementary Figure 7: DMN structural connectivity organised with respect to cytoarchitecture in the Replication dataset. i. 

Type-effect: Boxplots show depict average Enav of each DMN parcel to each cortical type. ii. Axis-effect: Cortical surfaces show 

the average Enav of each DMN parcel. Scatterplot shows the correlation of E1 with Enav. iii. Interaction-effect: Bar plots shows 

the linear correlation coefficient (r) of E1 value with type-average Enav. 
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Supplementary Figure 8: Relation of cytoarchitecture to effective connectivity (EC) of the default mode network (DMN) in 

Replication dataset. Left Boxplots show type-average effective connectivity with the DMN, where each point reflecting a DMN 

parcel. Centre Surface plots show the average effective connectivity of each DMN parcel, taken across all non-DMN parcels. This 

represents the y-axis in the correlation with parcel-wise values of the DMN cytoarchitectural axis in the scatterplot. Right Bar plots 

show the correlation coefficient type-average effective connectivity with the cytoarchitectural axis. Asterisks indicate pspin<0.004, 

(ie: Bonferroni correction of α=0.05 for six two-sided tests). 

 

Supplementary Figure 9: Expanded rDCM with non-isocortical regions. Left Boxplots show type-average effective connectivity 

with the DMN, where each point reflecting a DMN parcel. Centre left Surface plots show the average effective connectivity of 

each DMN parcel, taken across all non-DMN isocortical parcels. This represents the y-axis in the correlation with parcel-wise 

values of eigenvector 1 (E1, ie: data-driven cytoarchitectural axis) in the scatterplot. Centre right Bar plots show the correlation 

coefficient type- or region-average effective connectivity with the cytoarchitectural axis. Asterisks indicate pspin<0.002 (ie: 

Bonferroni correction of α=0.05 for thirteen two-sided tests). Far right Surface plots show the correlation coefficient of effective 

connectivity with the cytoarchitectural axis for non-isocortical regions. 
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 Supplementary Table 1: Roughness of cytoarchitectural axis within DMN subregion  

  Parahippocampus IPL MTG IFG Precuneus PFC CoV 

  left right left right left right left right left right left right % 

 

Amplitude parameters 

             

Ra Arithmetic average height 2.59 1.99 3.60 3.42 3.07 3.16 2.63 2.70 2.79 3.16 2.80 2.92 15 

Rq Root mean square roughness 2.90 2.36 2.78 2.62 1.99 2.57 2.64 2.15 2.95 2.98 2.55 2.62 12 

Rp Maximum height of peaks 5.43 4.32 5.45 5.45 5.43 5.45 5.16 3.67 5.48 5.44 5.37 5.35 11 

Rv Maximum depth of valleys 4.53 4.88 4.26 4.43 4.33 4.59 4.62 4.58 4.62 4.57 4.67 4.66 4 

Rpm Mean height of peaks 5.06 4.28 5.38 5.34 5.16 5.26 4.26 3.11 5.34 5.35 4.46 4.56 14 

Rvm Mean depth of valleys 4.44 4.56 3.77 3.78 2.25 3.76 4.50 4.48 4.02 4.05 4.54 4.53 16 

k Solidarity factor 0.84 1.13 0.78 0.81 0.80 0.84 0.90 1.25 0.84 0.84 0.87 0.87 16 

Rsk Skewness -0.27 0.40 -1.09 -1.11 -0.99 -1.00 0.65 1.00 -0.28 -0.60 1.01 1.11 911 

Rku Kurtosis 1.86 2.40 2.88 3.26 3.39 2.96 2.28 3.00 1.85 1.99 3.05 3.17 21 

 

Spatial parameters 

             

Pc Peak count 4 3 10 11 21 10 7 4 13 7 15 14 54 

S Mean spacing between peaks 24.10 23.25 31.68 30.59 48.25 44.62 36.38 24.16 35.91 32.91 73.60 65.36 41 

Sm Mean spacing between zero 

plane 

1.32 1.34 0.92 0.90 1.02 1.06 0.86 1.02 1.13 1.08 1.04 1.12 14 

n0 Number of intersections of 

zero plane 

180 230 626 421 738 599 1112 251 898 750 2110 1546 73 

rp Mean size of peaks 21.00 19.00 22.40 15.27 15.14 19.40 36.71 18.00 19.54 32.00 46.00 38.64 41 

 

Hybrid parameters 

             

γ Mean slope at zero plane 2.13 1.72 2.98 3.31 2.15 2.83 2.61 3.23 2.24 3.03 2.69 3.15 19 

Δa Mean slope 0.68 0.88 0.78 0.90 0.78 0.91 0.93 0.84 0.90 0.96 0.82 0.87 9 

Δq Root mean square of slope 1.27 1.48 1.47 1.69 1.39 1.61 1.70 1.52 1.64 1.75 1.49 1.67 9 

λa Average wavelength 11.00 10.99 17.72 19.28 15.05 17.99 15.35 14.24 15.84 19.09 14.38 16.00 18 

λq Root mean square of 

wavelength 

23.14 21.87 25.77 27.81 17.38 26.02 28.17 20.48 30.31 32.73 23.92 27.47 17 

Sf Stepness factor 3.41 2.67 3.32 3.08 3.14 3.35 2.26 2.77 3.17 3.41 2.90 3.25 11 

Wf Waviness factor 652 589 1247 979 2120 1269 2042 587 1830 1415 4941 3736 74 

 

IPL: inferior parietal lobule. MTG: middle temporal gyrus. IFG: inferior frontal gyrus. PFC: prefrontal cortex. CoV: coefficient of variation. 

 

Supplementary Table  2: Cortical types by functional network. 

 Kon Eu-III Eu-II Eu-I Dys Ag 
Total 

vertices 

Visual 0.29 0.41 0.17 0.10 0.00 0.03 2750 

Somatomotor 0.10 0.54 0.31 0.04 0.00 0.01 3751 

DAN 0.00 0.40 0.53 0.06 0.00 0.00 2188 

VAN 0.02 0.18 0.50 0.13 0.08 0.09 2285 

Limbic 0.00 0.24 0.28 0.11 0.26 0.10 1426 

Frontoparietal 0.00 0.18 0.56 0.23 0.01 0.04 2314 

Default mode 0.00 0.32 0.31 0.28 0.02 0.07 3765 

Total vertices 1218 6400 6805 2572 648 836  

Note: proportions are provided relative to the functional network (ie: 29% of the visual network is Kon). 

Kon=koniocortical. Eu=eulaminate. Dys=dysgranular. Ag=agranular. DAN=dorsal attention network. VAN=ventral attention 

network. 
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Supplementary Table  3: Key statistics in primary and replication analyses for navigation efficiency 

Statistical test Type/network MICs HCP 

Correlation with data-

driven cytoarchitectural 

axis (averaged by type, 

calculated for non-DMN 

targets) 

Kon r=-0.63, p<0.001 r=-0.51, p<0.001  

Eu-III 

 

r=-0.55, p<0.001 r=-0.55, p<0.001 

Eu-III 

 

r=-0.33, p=0.015 r=-0.06, p=0.615 

Eu-I r=-0.29, p=0.062 r=0.11, p=0.707 

Dys r=0.08, p=0.325 r=0.06, p=0.369 

Ag r=0.12, p=0.185 r=0.22, p=0.072 

Divergence from 

balanced model 

Visual KL=0.015, p=0.364 KL=0.017, p=0.077 

Somatomotor KL=0.006, p=0.288 KL=0.044, p=0.705 

DAN KL=0.023, p=0.957 KL=0.056, p=0.819 

VAN KL=0.005, p=0.472 KL=0.019, p=0.541 

Limbic KL=0.034, p=0.761 KL=0.043, p=0.375 

Frontoparietal KL=0.005, p=0.683 KL=0.017, p=0.491 

 DMN KL=0.002, p=0.107 KL=0.010, p=0.281 
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Supplementary Table  4: Key statistics in primary and replication analyses for cortical only rDCM 

Statistical test Type/network 
MICs HCP 

Afferent Efferent Afferent Efferent 

Multiple linear regression model of effective 

connectivity by cytoarchitecture 

R2=0.24 , 

p<0.001 

R2=0.06 , 

p<0.001 

R2=0.22, 

p<0.001 

R2=0.013 , 

p<0.001 

Correlation with data-driven 

cytoarchitectural axis 

All non-DMN r=-0.41, 

p<0.001 

r=-0.05, 

p=0.395 

r=-0.31, 

p<0.001 

r=-0.24, 

p<0.001 

Kon r=-0.36, 

p=0.001 

r=-0.06, 

p=0.129 

r=-0.23, 

p=0.001 

r=-0.25, 

p=0.001 

Eu-III 

 

r=-0.45, 

p<0.001 

r=0.00, 

p=0.185 

r=-0.35, 

p<0.001 

r=-0.23, 

p<0.001 

Eu-III 

 

r=-0.21, 

p=0.001 

r=0.16, 

p=0.817 

r=-0.22, 

p=0.001 

r=-0.11, 

p=0.014 

Eu-I r=-0.44, 

p<0.001 

r=0.01, 

p=0.613 

r=-0.22, 

p=0.028 

r=-0.26, 

p=0.001 

Dys r=-0.23, 

p=0.004 

r=0.04, 

p=0.410 

r=-0.20, 

p=0.029 

r=-0.07, 

p=0.129 

Ag r=-0.37, 

p=0.004 

r=0.05, 

p=0.225 

r=-0.20, 

p=0.059 

r=-0.29, 

p<0.001 

Average type-specific 

connectivity (effective 

connectivity x 10-3) 

Kon 0.53±0.47, 

p=0.311 

0.62±0.49, 

p=0.126 

0.53±0.35, 

p=0.012 

0.42±0.28, 

p=0.027 

Eu-III 

 

0.35±0.13, 

p=0.986 

0.50±0.22, 

p=0.164 

0.27±0.12, 

p=0.864 

0.26±0.15, 

p=0.609 

Eu-III 

 

0.47±0.17, 

p=0.364 

0.38±0.19, 

p=0.954 

0.25±0.10, 

p=0.984 

0.24±0.10, 

p=0.942 

Eu-I 0.74±0.19, 

p<0.001 

0.50±0.24, 

p=0.258 

0.37±0.16, 

p=0.030 

0.32±0.15, 

p=0.078 

Dys 0.47±0.19, 

p=0.522 

0.48±0.25, 

p=0.508 

0.27±0.10, 

p=0.613 

0.26±0.15, 

p=0.522 

Ag 0.54±0.33, 

p=0.337 

0.63±0.33, 

p=0.131 

0.43±0.29, 

p=0.077 

0.32±0.20, 

p=0.267 

Divergence from balanced 

model 

Visual KL=0.01, 

p=0.038 

KL=0.04, 

p=0.197 

KL=0.06, 

p=0.445 

KL=0.05, 

p=0.196 

Somatomotor KL=0.07, 

p=0.956 

KL=0.07, 

p=0.896 

KL=0.05, 

p=0.783 

KL=0.13, 

p=0.996 

DAN KL=0.03, 

p=0.657 

KL=0.08, 

p=0.999 

KL=0.02, 

p=0.388 

KL=0.07, 

p=0.724 

VAN KL=0.20, 

p=1 

KL=0.17, 

p=1 

KL=0.15, 

p=1 

KL=0.24, 

p=1 

Limbic KL=0.06, 

p=1 

KL=0.14, 

p=1 

KL=0.03, 

p=0.517 

KL=0.03, 

p=0.054 

Frontoparietal KL=0.04, 

p=0.479 

KL=0.07, 

p=0.718 

KL=0.06, 

p=0.804 

KL=0.08, 

p=0.597 

DMN KL=0.04, 

p=0.938 

KL=0.02, 

p=0.043 

KL=0.06, 

p=0.995 

KL=0.03, 

p=0.013 
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Supplementary Table  5: Key statistics in primary and replication analyses for extended rDCM 

Statistical test Type/network 
MICs HCP 

Afferent Efferent Afferent Efferent 

Multiple linear regression model of effective 

connectivity by cytoarchitecture 

R2=0.46, 

p<0.001 

R2=0.50, 

p<0.001 

R2=0.46, 

p<0.001 

R2=0.48, 

p<0.001 

Correlation with data-driven 

cytoarchitectural axis 

All non-DMN 

isocortex 

r=-0.40, 

p<0.001 

r=0.00, 

p=0.325 

r=-0.34, 

p<0.001 

r=-0.30, 

p<0.001 

Kon r=-0.41, 

p<0.001 

r=-0.15, 

p=0.026 

r=-0.30, 

p=0.004 

r=-0.31, 

p=0.001 

Eu-III 

 

r=-0.43, 

p<0.001 

r=0.03, 

p=0.280 

r=-0.40, 

p<0.001 

r=-0.32, 

p<0.001 

Eu-III 

 

r=-0.14, 

p=0.025 

r=0.22, 

p=0.975 

r=-0.23, 

p=0.011 

r=-0.17, 

p=0.033 

Eu-I r=-0.41, 

p<0.001 

r=0.09, 

p=0.673 

r=-0.26, 

p=0.007 

r=-0.26, 

p=0.004 

Dys r=-0.11, 

p=0.026 

r=0.02, 

p=0.293 

r=-0.03, 

p=0.310 

r=-0.04, 

p=0.240 

Ag r=-0.21, 

p=0.019 

r=0.05, 

p=0.656 

r=-0.12, 

p=0.180 

r=-0.10, 

p=0.061 

Thalamus r=-0.02, 

p=0.383 

r=-0.15, 

p=0.099 

r=0.072, 

p=0.100 

r=0.01, 

p=0.250 

Caudate r=0.50, 

p<0.001 

r=0.43, 

p<0.001 

r=0.34, 

p<0.001 

r=0.29, 

p<0.001 

Pallidum r=0.05, 

p=0.393 

r=0.45, 

p<0.001 

r=0.39, 

p<0.001 

r=0.40, 

p<0.001 

Putamen r=-0.26, 

p=0.002 

r=-0.33, 

p=0.002 

r=-0.03, 

p=0.521 

r=-0.19, 

p=0.056 

Hippocampus r=-0.19, 

p=0.038 

r=-0.15, 

p=0.041 

r=-0.29, 

p=0.003 

r=-0.27, 

p=0.047 

Amygdala r=-0.07, 

p=0.153 

r=0.16, 

p=0.131 

r=-0.19, 

p=0.007 

r=-0.12, 

p=0.033 

Accumbens r=0.14, 

p=0.050 

r=0.32, 

p=0.001 

r=0.06, 

p=0.187 

r=0.16, 

p=0.018 

Average type-specific 

connectivity (effective 

connectivity x 10-3) 

Kon 0.73±0.59, 

p=0.305 

0.85±0.55, 

p=0.005 

0.51±0.33, 

p=0.028 

0.52±0.32, 

p=0.028 

Eu-III 

 

0.50±0.19, 

p=0.980 

0.66±0.24, 

p=0.147 

0.24±0.16, 

p=0.388 

0.33±0.17, 

p=0.482 

Eu-III 

 

0.64±0.21, 

p=0.380 

0.52±0.23, 

p=0.997 

0.31±0.13, 

p=0.838 

0.30±0.13, 

p=0.839 

Eu-I 0.90±0.19, 

p<0.001 

0.66±0.22, 

p=0.231 

0.39±0.20, 

p=0.102 

0.38±0.20, 

p=0.109 

Dys 0.67±0.19, 

p=0.479 

0.51±0.25, 

p=0.760 

0.19±0.07, 

p=0.914 

0.21±0.10, 

p=0.821 

Ag 0.80±0.33, 

p=0.213 

0.76±0.27, 

p=0.189 

0.24±0.16, 

p=0.865 

0.27±0.17, 

p=0.712 
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