000903463 001__ 903463 000903463 005__ 20211219012041.0 000903463 0247_ $$2doi$$a10.1101/2021.08.04.454795 000903463 0247_ $$2Handle$$a2128/29435 000903463 0247_ $$2altmetric$$aaltmetric:111230025 000903463 037__ $$aFZJ-2021-05136 000903463 1001_ $$00000-0002-4448-8998$$aRoyer, Jessica$$b0$$eCorresponding author 000903463 245__ $$aAn Open MRI Dataset for Multiscale Neuroscience 000903463 260__ $$c2021 000903463 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1639131807_20223 000903463 3367_ $$2ORCID$$aWORKING_PAPER 000903463 3367_ $$028$$2EndNote$$aElectronic Article 000903463 3367_ $$2DRIVER$$apreprint 000903463 3367_ $$2BibTeX$$aARTICLE 000903463 3367_ $$2DataCite$$aOutput Types/Working Paper 000903463 520__ $$aMultimodal neuroimaging grants a powerful window into the structure and function of the human brain at multiple scales. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends (also referred to as gradients) in brain microstructure and connectivity, offering an integrative framework to study multiscale brain organization. Here, we share a multimodal MRI dataset for Microstructure-Informed Connectomics (MICA-MICs) acquired in 50 healthy adults (23 women; 29.54±5.62 years) who underwent high-resolution T1-weighted MRI, myelin-sensitive quantitative T1 relaxometry, diffusion-weighted MRI, and resting-state functional MRI at 3 Tesla. In addition to raw anonymized MRI data, this release includes brain-wide connectomes derived from i) resting-state functional imaging, ii) diffusion tractography, iii) microstructure covariance analysis, and iv) geodesic cortical distance, gathered across multiple parcellation scales. Alongside, we share large-scale gradients estimated from each modality and parcellation scale. Our dataset will facilitate future research examining the coupling between brain microstructure, connectivity, and macroscale function. MICA-MICs is available on the Canadian Open Neuroscience Platform’s data portal ( https://portal.conp.ca ). 000903463 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0 000903463 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x1 000903463 588__ $$aDataset connected to CrossRef 000903463 7001_ $$00000-0002-2917-1212$$aRodríguez-Cruces, Raúl$$b1 000903463 7001_ $$00000-0002-7585-8963$$aTavakol, Shahin$$b2 000903463 7001_ $$aLarivière, Sara$$b3 000903463 7001_ $$00000-0002-9840-6257$$aHerholz, Peer$$b4 000903463 7001_ $$00000-0001-6989-2981$$aLi, Qiongling$$b5 000903463 7001_ $$00000-0003-0574-6576$$ade Wael, Reinder Vos$$b6 000903463 7001_ $$0P:(DE-Juel1)187055$$aPaquola, Casey$$b7$$ufzj 000903463 7001_ $$00000-0003-3922-7643$$aBenkarim, Oualid$$b8 000903463 7001_ $$00000-0001-7096-337X$$aPark, Bo-yong$$b9 000903463 7001_ $$aLowe, Alexander J.$$b10 000903463 7001_ $$00000-0002-8880-9204$$aMargulies, Daniel$$b11 000903463 7001_ $$00000-0002-7298-2459$$aSmallwood, Jonathan$$b12 000903463 7001_ $$aBernasconi, Andrea$$b13 000903463 7001_ $$aBernasconi, Neda$$b14 000903463 7001_ $$aFrauscher, Birgit$$b15 000903463 7001_ $$00000-0001-9256-6041$$aBernhardt, Boris C.$$b16$$eCorresponding author 000903463 773__ $$a10.1101/2021.08.04.454795 000903463 8564_ $$uhttps://juser.fz-juelich.de/record/903463/files/Royer_etal_2021.08.04.454795v1.full.pdf$$yOpenAccess 000903463 909CO $$ooai:juser.fz-juelich.de:903463$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000903463 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000903463 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000903463 9141_ $$y2021 000903463 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187055$$aForschungszentrum Jülich$$b7$$kFZJ 000903463 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 000903463 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0 000903463 9801_ $$aFullTexts 000903463 980__ $$apreprint 000903463 980__ $$aVDB 000903463 980__ $$aUNRESTRICTED 000903463 980__ $$aI:(DE-Juel1)INM-1-20090406