TY - EJOUR AU - Royer, Jessica AU - Rodríguez-Cruces, Raúl AU - Tavakol, Shahin AU - Larivière, Sara AU - Herholz, Peer AU - Li, Qiongling AU - de Wael, Reinder Vos AU - Paquola, Casey AU - Benkarim, Oualid AU - Park, Bo-yong AU - Lowe, Alexander J. AU - Margulies, Daniel AU - Smallwood, Jonathan AU - Bernasconi, Andrea AU - Bernasconi, Neda AU - Frauscher, Birgit AU - Bernhardt, Boris C. TI - An Open MRI Dataset for Multiscale Neuroscience M1 - FZJ-2021-05136 PY - 2021 AB - Multimodal neuroimaging grants a powerful window into the structure and function of the human brain at multiple scales. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends (also referred to as gradients) in brain microstructure and connectivity, offering an integrative framework to study multiscale brain organization. Here, we share a multimodal MRI dataset for Microstructure-Informed Connectomics (MICA-MICs) acquired in 50 healthy adults (23 women; 29.54±5.62 years) who underwent high-resolution T1-weighted MRI, myelin-sensitive quantitative T1 relaxometry, diffusion-weighted MRI, and resting-state functional MRI at 3 Tesla. In addition to raw anonymized MRI data, this release includes brain-wide connectomes derived from i) resting-state functional imaging, ii) diffusion tractography, iii) microstructure covariance analysis, and iv) geodesic cortical distance, gathered across multiple parcellation scales. Alongside, we share large-scale gradients estimated from each modality and parcellation scale. Our dataset will facilitate future research examining the coupling between brain microstructure, connectivity, and macroscale function. MICA-MICs is available on the Canadian Open Neuroscience Platform’s data portal ( https://portal.conp.ca ). LB - PUB:(DE-HGF)25 DO - DOI:10.1101/2021.08.04.454795 UR - https://juser.fz-juelich.de/record/903463 ER -