000903464 001__ 903464
000903464 005__ 20211219012042.0
000903464 0247_ $$2doi$$a10.1101/2021.09.29.462379
000903464 0247_ $$2Handle$$a2128/29434
000903464 0247_ $$2altmetric$$aaltmetric:114342382
000903464 037__ $$aFZJ-2021-05137
000903464 1001_ $$0P:(DE-HGF)0$$aOldham, S.$$b0$$eCorresponding author
000903464 245__ $$aModeling spatial, developmental, physiological, and topological constraints on human brain connectivity
000903464 260__ $$c2021
000903464 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1639130732_24306
000903464 3367_ $$2ORCID$$aWORKING_PAPER
000903464 3367_ $$028$$2EndNote$$aElectronic Article
000903464 3367_ $$2DRIVER$$apreprint
000903464 3367_ $$2BibTeX$$aARTICLE
000903464 3367_ $$2DataCite$$aOutput Types/Working Paper
000903464 520__ $$aThe complex connectivity of nervous systems is thought to have been shaped by competitive selection pressures to minimize wiring costs and support adaptive function. Accordingly, recent modeling work indicates that stochastic processes, shaped by putative trade-offs between the cost and value of each connection, can successfully reproduce many topological properties of macroscale human connectomes measured with diffusion magnetic resonance imaging. Here, we derive a new formalism with the aim to more accurately capture the competing pressures of wiring cost minimization and topological complexity. We further show that model performance can be improved by accounting for developmental changes in brain geometry and associated wiring costs, and by using inter-regional transcriptional or microstructural similarity rather than topological wiring-rules. However, all models struggled to capture topologies spatial embedding. Our findings highlight an important role for genetics in shaping macroscale brain connectivity and indicate that stochastic models offer an incomplete account of connectome organization.
000903464 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000903464 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x1
000903464 588__ $$aDataset connected to CrossRef
000903464 7001_ $$00000-0002-3003-4055$$aFulcher, B. D.$$b1
000903464 7001_ $$00000-0002-7435-0236$$aAquino, K.$$b2
000903464 7001_ $$00000-0003-4098-7084$$aArnatkevičiūtė, A.$$b3
000903464 7001_ $$0P:(DE-Juel1)187055$$aPaquola, C.$$b4$$ufzj
000903464 7001_ $$0P:(DE-HGF)0$$aShishegar, R.$$b5
000903464 7001_ $$0P:(DE-HGF)0$$aFornito, A.$$b6
000903464 773__ $$a10.1101/2021.09.29.462379
000903464 8564_ $$uhttps://juser.fz-juelich.de/record/903464/files/Oldham_etal_2021.09.29.462379v1.full.pdf$$yOpenAccess
000903464 909CO $$ooai:juser.fz-juelich.de:903464$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903464 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903464 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903464 9141_ $$y2021
000903464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187055$$aForschungszentrum Jülich$$b4$$kFZJ
000903464 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000903464 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000903464 9801_ $$aFullTexts
000903464 980__ $$apreprint
000903464 980__ $$aVDB
000903464 980__ $$aUNRESTRICTED
000903464 980__ $$aI:(DE-Juel1)INM-1-20090406